• Title/Summary/Keyword: Slip-parameter

Search Result 166, Processing Time 0.023 seconds

Integrated Control of Torque Vectoring and Rear Wheel Steering Using Model Predictive Control (모델 예측 제어 기법을 이용한 토크벡터링과 후륜조향 통합 제어)

  • Hyunsoo, Cha;Jayu, Kim;Kyongsu, Yi
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.4
    • /
    • pp.53-59
    • /
    • 2022
  • This paper describes an integrated control of torque vectoring and rear wheel steering using model predictive control. The control objective is to minimize the yaw rate and body side slip angle errors with chattering alleviation. The proposed model predictive controller is devised using a linear parameter-varying (LPV) vehicle model with real time estimation of the varying model parameters. The proposed controller has been investigated via computer simulations. In the simulation results, the performance of the proposed controller has been compared with uncontrolled cases. The simulation results show that the proposed algorithm can improve the lateral stability and handling performance.

Strain demand prediction method for buried X80 steel pipelines crossing oblique-reverse faults

  • Liu, Xiaoben;Zhang, Hong;Gu, Xiaoting;Chen, Yanfei;Xia, Mengying;Wu, Kai
    • Earthquakes and Structures
    • /
    • v.12 no.3
    • /
    • pp.321-332
    • /
    • 2017
  • The reverse fault is a dangerous geological hazard faced by buried steel pipelines. Permanent ground deformation along the fault trace will induce large compressive strain leading to buckling failure of the pipe. A hybrid pipe-shell element based numerical model programed by INP code supported by ABAQUS solver was proposed in this study to explore the strain performance of buried X80 steel pipeline under reverse fault displacement. Accuracy of the numerical model was validated by previous full scale experimental results. Based on this model, parametric analysis was conducted to study the effects of four main kinds of parameters, e.g., pipe parameters, fault parameters, load parameter and soil property parameters, on the strain demand. Based on 2340 peak strain results of various combinations of design parameters, a semi-empirical model for strain demand prediction of X80 pipeline at reverse fault crossings was proposed. In general, reverse faults encountered by pipelines are involved in 3D oblique reverse faults, which can be considered as a combination of reverse fault and strike-slip fault. So a compressive strain demand estimation procedure for X80 pipeline crossing oblique-reverse faults was proposed by combining the presented semi-empirical model and the previous one for compression strike-slip fault (Liu 2016). Accuracy and efficiency of this proposed method was validated by fifteen design cases faced by the Second West to East Gas pipeline. The proposed method can be directly applied to the strain based design of X80 steel pipeline crossing oblique-reverse faults, with much higher efficiency than common numerical models.

Clinical Studies on Spondylolisthesis (척추전방전위증(脊椎前方轉位症)에 대한 임상적(臨床的) 고찰(考察))

  • Han, Moo-Gyu;Jin, Jae-Do;Lee, Jeoung-Hoon;Lee, Seung-Woo;Han, Sang-Won
    • Journal of Acupuncture Research
    • /
    • v.18 no.3
    • /
    • pp.215-226
    • /
    • 2001
  • Objective : Spondylolisthesis has become one of the major causes of the lower back pain in the orthopedic field. We wanted to compare the radiological change with before & after treatment including constitution-acupuncture on spondylolisthesis. Methods : This study were carried out on 9 patients with spondylolisthesis. We reviewed medical records and radiological films. We studied rating score, percent of slip, sagittal angle, percent of posterior disc height. Results and conclusions : The improvement index showed 0.04, 030, 033, 0.00, 0.32 points in isthmic type, and 0.55, 0.56, 0.53, 0.00 points in degenerative type. The percent of slip for pre/post-treatment showed 20/20, 12/11, 24/20, 30/30, 4/3 percents in isthmic type, and 12/4, 16/11, 13/9, 8/8 percents in degenerative type. Sagittal angle showed 11/11, 15/12, 21/18, 17/15, 21.19 degrees in isthmic type, and 22/21, 19/15, 2/2, 8/9 degrees in degenerative type. Percent of posterior disc height were 17/18, 26/28, 24/25, 22/23, 25/27 in isthmic type, and 29/33, 37/45, 25/31, 24/24 in degenerative type. The result suggest that constitution-acupuncture and conservational treatment are good method for treatment of spondylolisthesis, and especially in degenerative type.

  • PDF

Study on stiffness deterioration in steel-concrete composite beams under fatigue loading

  • Wang, Bing;Huang, Qiao;Liu, Xiaoling;Ding, Yong
    • Steel and Composite Structures
    • /
    • v.34 no.4
    • /
    • pp.499-509
    • /
    • 2020
  • The purpose of this paper is to investigate the degradation law of stiffness of steel-concrete composite beams after certain fatigue loads. First, six test beams with stud connectors were designed and fabricated for static and fatigue tests. The resultant failure modes under different fatigue loading cycles were compared. And an analysis was performed for the variations in the load-deflection curves, residual deflections and relative slips of the composite beams during fatigue loading. Then, the correlations among the stiffness degradation of each test beam, the residual deflection and relative slip growth during the fatigue test were investigated, in order to clarify the primary reasons for the stiffness degradation of the composite beams. Finally, based on the stiffness degradation function under fatigue loading, a calculation model for the residual stiffness of composite beams in response to fatigue loading cycles was established by parameter fitting. The results show that the stiffness of composite beams undergoes irreversible degradation under fatigue loading. And stiffness degradation is associated with the macrobehavior of material fatigue damage and shear connection degradation. In addition, the stiffness degradation of the composite beams exhibit S-shaped monotonic decreasing trends with fatigue cycles. The general agreement between the calculation model and experiment shows good applicability of the proposed model for specific beam size and fatigue load parameters. Moreover, the research results provide a method for establishing a stiffness degradation model for composite beams after fatigue loading.

Experimental study on marine SCR system (선박용 SCR 시스템에 대한 실험적 연구)

  • NAM, Hong-Shik;HUR, Jae-Jung;SIN, Dong-Uk;RHO, Beom-Seuk;RYU, Ki-Tak;LEE, Yun-Hyung;KANG, Jeong-Gu;LEE, Sung-Woo
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.56 no.2
    • /
    • pp.183-192
    • /
    • 2020
  • This study conducted the experiment for the development of the low pressure type SCR system. The experimental equipment of SCR system was installed, which was widely used as the nitrogen oxides abatement system, and the demonstration experiment was conducted to see that it met the Tier III regulation according to the IMO NOx Technical Code. The SCR system demonstration experiment was divided into three stages: SCR system component operation test, engine parameter test by engine load, and NOx abatement performance and ammonia slip verification test. The final performance of the SCR system was verified through analysis of NOx abatement performance and ammonia slip test results for each load variation.

Evaluation of Bond-Slip Behavior of High Strength Lightweight Concrete with Compressive Strength 120 MPa and Unit Weight 20 kN/m3 (압축강도 120 MPa, 단위중량 20 kN/m3 고강도 경량 콘크리트 부착-슬립 거동 평가)

  • Dong-Gil Gu;Jun-Hwan Oh;Sung-Won Yoo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.1
    • /
    • pp.39-47
    • /
    • 2023
  • The demand for lightweight and high-strength materials is increasing. However, studies on the bond of concrete and reinforcing bars for high-strength lightweight concrete with a compressive strength of 120 MPa and a unit weight of 20 kN/m3 to structural members are lacking. Therefore, in this paper, 108 specimens of high-strength lightweight concrete with a compressive strength of 120 MPa and a unit weight of about 20 kN/m3 were fabricated, a direct pull-out test was performed, and the bond characteristics were evaluated by comparing the test results with design code. Compared to the decrease in unit weight, the solid bubble shows relatively little reduction in compressive strength and modulus of elasticity. It was f ound to have larger slip and parameter values than concrete with low compressive strength and unit weight.

Development and Validation of Urea- SCR Control-Oriented Model for NOX and NH3 Slip Reduction (NOX 및 NH3 Slip 저감을 위한 Urea-SCR 제어기반 모델 개발 및 검증)

  • Lee, Seung Geun;Lee, Seang Wock;Kang, Yeonsik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.1
    • /
    • pp.1-9
    • /
    • 2015
  • To satisfy stricter $NO_X$ emission regulations for light- and heavy-duty diesel vehicles, a control algorithm needs to be developed based on a selective catalytic reaction (SCR) dynamics model for chemical reactions. This paper presents the development and validation of a SCR dynamics model through test rig experiments and MATLAB simulations. A nonlinear state space model is proposed based on the mass conservation law of chemical reactions in the SCR dynamics model. Experiments were performed on a test rig to evaluate the effects of the $NO_X$ and $NH_3$ concentrations, gas temperature, and space velocity on the $NO_X$ conversion efficiency for the urea-SCR system. The parameter values of the proposed SCR model were identified using the experimental datasets. Finally, a control-oriented model for an SCR system was developed and validated from the experimental data in a MATLAB simulation. The results of this study should contribute toward developing a closed-loop control strategy for $NO_X$ and $NH_3$ slip reduction in the urea-SCR system for an actual engine test bench.

Effects of Fault Parameters on the Ground Motion Synthesized by the Stochastic Green Function Method (추계학적 그린함수법으로 합성된 지반운동에 대한 단층 파라미터의 영향)

  • Kim, Jung-Han;Seo, Jeong-Moon;Choi, In-Kil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.27-35
    • /
    • 2012
  • In this study, the ground motion was synthesized using the finite fault model by the stochastic green function method, and the difference in the ground motions was evaluated by using various values of the source parameters. An earthquake with a moment magnitude of 6.5 was assumed for the example fault model. The distribution of the slip in the fault plane was calculated using the statistical data of the asperity area. The source parameters considered in this study were the location of the hypocenter in the fault plane and the ratio of the rupture to the shear wave velocity, the rise time, the corner frequency of the source spectrum, and a high frequency filter. The values of the parameters related to the stochastic element source model were adjusted for different tectonic regions, and the others were selected for several possible cases. The response spectra were constructed from the synthesized ground motion time history and compared with the different parameter values. The frequency range affected by each parameter and the differences of the spectral accelerations were evaluated.

Determination of Steel-concrete Interface Parameters: Me chanical Properties of Interface Parameters (강-콘크리트 계면의 계면상수 결정 : 계면상수의 역학적 성질)

  • Lee, Ta;Joo, Young-Tae;Lee, Yong-Hak
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.6
    • /
    • pp.781-788
    • /
    • 2009
  • Mechanical properties of steel-concrete interface were evaluated on the basis of experimental observations. The properties included bond strength, unbounded and bonded friction angles, residual level of friction angle, mode I fracture energy, mode II bonded fracture energy and unbonded slip-friction energy under different levels of normal stress, and shape parameters to define geometrical shape of failure envelope. For this purpose, a typical type of constitutive model of describing steel-concrete interface behavior was presented based on a hyperbolic three-parameter Mohr-Coulomb type failure criterion. The constitutive model depicts the strong dependency of interface behavior on bonding condition of interface, bonded or unbounded. Values of the interface parameters were determined through interpretation of experimental results, geometry of failure envelope and sensitivity analysis. Nonlinear finite element analysis that incorporates steel-concrete interface as well as material nonlinearities of concrete and steel were performed to predict the experimental results.

Analysis of Contact Stiffness and Bending Stiffness according to Contact Angle of Curvic Coupling (곡률 커플링 접촉각에 따른 접촉 강성 및 굽힘 강성해석)

  • Yu, Yonghun;Cho, Yongjoo;Lee, Donghyun;Kim, Young-Cheol
    • Tribology and Lubricants
    • /
    • v.34 no.1
    • /
    • pp.23-32
    • /
    • 2018
  • Coupling is a mechanical component that transmits rotational force by connecting two shafts. Curvic coupling is widely used in high-performance systems because of its excellent power transmission efficiency and easy machining. However, coupling applications change dynamic behavior by reducing the stiffness of an entire system. Contact surface stiffness is an important parameter that determines the dynamic behavior of a system. In addition, the roughness profile of a contact surface is the most important parameter for obtaining contact stiffness. In this study, we theoretically establish the process of contact and bending stiffness analysis by considering the rough surface contact at Curvic coupling. Surface roughness parameters are obtained from Nayak's random process, and the normal contact stiffness of a contact surface is calculated using the Greenwood and Williamson model in the elastic region and the Jackson and Green model in the elastic-plastic region. The shape of the Curvic coupling contact surface is obtained by modeling a machined shape through an actual machining tool. Based on this modeling, we find the maximum number of gear teeth that can be machined according to the contact angle. Curvic coupling stiffness is calculated by considering the contact angle, and the calculation process is divided into stick and slip conditions. Based on this process, we investigate the stiffness characteristics according to the contact angle.