• Title/Summary/Keyword: Slip-frequency control

Search Result 119, Processing Time 0.027 seconds

New control strategy of propulsion system for the Transit Maglev System (자기부상열차용 추진제어장치의 새로운 제어기법)

  • 이은규;최재호
    • Journal of the Korean Society for Railway
    • /
    • v.5 no.4
    • /
    • pp.267-275
    • /
    • 2002
  • The traction drive system for the urban transit maglev system is described in this paper. To control the magnitude and frequency of the output voltage of induction motor transiently, the vector control strategy is generally used. But in case of the traction drive system for the railway vehicle, it is difficult to use the vector control caused by the one-pulse mode in the high speed region. Therefore, this paper proposes the control strategy combined the vector control in the low speed region and the slip frequency control in the high speed region. And also, the overmodulation PWM method is discussed to make the change to the one-pulse mode softly. The performance of the proposed traction drive system is verified by the MATLAB simulation results.

Improvement in Efficiency of CSI fed Induction Motor by Means of Flux Control (전류형 인버어터로 작동되는 유도전동기의 자동제어에 의한 효율게선에 관한 연구)

  • 박민호;김흥근
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.31 no.8
    • /
    • pp.46-53
    • /
    • 1982
  • When an induction motor is lightly loaded, the efficiency can be very substantially improved by controlling the air gap flux. Thus in the system which requires constant speed under either normal load or light load, it is possible to save energy by means of controlling the air gap flux. In this paper, the required relationships between stator current and rotor slip frequency for optimal efficiency control is derived and the improved control loop is suggested.

  • PDF

An Effective Rotor Current Controller for Unbalanced Stand-Alone DFIG Systems in the Rotor Reference Frame

  • Phan, Van-Tung;Lee, Hong-Hee;Chu, Tae-Won
    • Journal of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.724-732
    • /
    • 2010
  • This paper presents an effective rotor current controller for variable-speed stand-alone doubly fed induction generator (DFIG) systems feeding an unbalanced three-phase load. The proposed current controller is developed based on proportional plus two resonant regulators, which are tuned at the positive and negative slip frequencies and implemented in the rotor reference frame without decomposing the positive and negative sequence components of the measured rotor current. In addition, the behavior of the proposed controller is examined in terms of control performance and stability with respect to rotor speed variations, i.e., slip frequency variations. Simulations and experimental results are shown to validate the robustness and effectiveness of the proposed control method.

New Overmodulation strategy for Propulsion system of the Light Rail Transit (경량전철용 추진제어장치의 새로운 과변조 기법)

  • Lee, Eun-Kyu;Choi, Jae-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.194-199
    • /
    • 2003
  • The traction drive system for the urban transit Rubber-tire system is described in this paper. To control the magnitude and frequency of the output voltage of induction motor transiently, the vector control strategy is generally used. But in case of the traction drive system for the railway vehicle, it is difficult to use the vector control caused by the one-pulse mode in the high speed region. Therefore, this paper proposes the control strategy combined the vector control in the low speed region and the slip frequency control in the high speed region. And also, the overmodulation PWM method is discussed to make the change to the one-pulse mode softly. The performance of the Proposed traction drive system is verified by the MATLAB simulation results.

  • PDF

Development of propulsion system for the Urban Transit Maglev System (도시형 자기부상열차 적용을 위한 추진제어장치의 개발)

  • Lee Eun Kyu;Kim Hyung Chul;Song Young Sin;Choi Jae Ho
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.86-90
    • /
    • 2002
  • In this paper, traction system for urban transit maglev system is proposed. Using vector control strategy to control magnitude and frequency of output voltage transiently is general. But in case of traction system for railway vehicle, it is impossible that adapt vector control because there is one-pulse mode in a high speed region. So this paper proposes the control strategy using vector control in a low speed region and slip frequency control in a high speed region. And also proposes overmodulation method that makesto change in one-pulse mode softly. The performance of traction system will be verified by simulation results using ACSL.

  • PDF

Development of control algorithm for TTX Tilting Train eXpress propulsion system (틸팅 차량용 추진제어장치의 제어 알고리즘 개발)

  • Kim, Hyung-Cheol;Lee, Eun-Kyu;Choi, Jae-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1343-1345
    • /
    • 2005
  • In this paper, control schemes are proposed for a propulsion system(Converter/Inverter) of the TTX(Tilting Train express). In developed traction converter, unity power factor control, compensation method of dc link voltage have been applied. Output current of converter contains harmonics ripple at twice input ac line frequency, which causes a ripple in the dc link voltage so that control scheme is developed in inverter system to reduce the pulsating torque current. At low speed region, vector control scheme is applied and slip frequency control is adopted at high speed region. The performance of propulsion system will be verified by simulation and prototype experimental results.

  • PDF

A control of wound-rotor induction generator for random wave input generation system

  • Kim, Moon-Hwan
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.3
    • /
    • pp.223-228
    • /
    • 2007
  • This paper deals with the secondary excited induction generator applied to random wave input generation system. As it is preferred to stabilize the output voltage and frequency in the constant level, microcomputer controlled CSI connected to the secondary windings supplies the secondary current with slip frequency. For testing this method, the input torque simulator is constructed, according to the power flow analysis. The experimental and numerical results show the advantage of secondary excited induction generator system for the random input wave generation system.

Vector Control using a Slip Angle Frequency for the Thrust Control of SLIM Used a Conveyor by the Inverter Based DSP (DSP 인버터를 이용한 반송용 선형기기의 추력제어를 위한 슬립 각 주파수 벡터제어)

  • 신동률;허태원;박지호;조용길;노태균;우정인
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.3
    • /
    • pp.29-37
    • /
    • 2000
  • In this paper, the thrust control of PWM Inverter-fed SLIM(Single-sided Linear Induction Motor) is achieved by vector control and PID control with DSP(TMS320C32). SLIM which used as a conveyor has required the quick response and the constant operating without air gap trembling while it conveys load.Thus, SLIM should have the smallest trembling of air gap length. First, voltage equations for SLIM are calculated from the proposed equivalent circuit in this peper, and not only the exciting current but also the thrust component are obtained from them. The thrust current ripple can be reduced by the vector controller using a slip angle frequency, and the PID controller is also use for the position control.

  • PDF

The Analysis of Strength and Driving Characteristic according to Design of Traction Motor for 8200 Electric Locomotive Series (8200호대 전기기관차 견인전동기의 설계에 따른 강도 및 운전특성 해석)

  • Lim, Chae-Woong;Yun, Cha-Jung;Kim, Jae-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.165-170
    • /
    • 2015
  • In this paper, The strength and driving characteristics of it were investigated according to developing the traction motor for 8200 electric locomotive series. For this purpose, Flux density strength was analyzed and then structural strength was investigated such as a stator frame, design of the rotor shaft bearing according to the design process. In addition, the traction motor operating point was analyzed according to slip frequency variation at a power source frequency. As the results of analysis on torque-speed characteristic curve, we was confirmed that traction motor was controlled as torque control prior to motor speed 1610[rpm], power control between 1610[rpm] and 2500[rpm] and breakdown torque control more than motor speed 2500[rpm].

Speed-sensorless Induction Motor Control System using the Rotor Flux Error (회전자 자속 오차를 이용한 센서리스 유도전동기 제어 시스템)

  • Jeong Gang-Youl
    • Proceedings of the KIPE Conference
    • /
    • 2003.11a
    • /
    • pp.123-126
    • /
    • 2003
  • This paper proposes a speed-sensorless induction motor control system using the rotor flux error. The rotor flux observer uses the reduced- dimensional state estimator technique instead of directly measuring the rotor flux. The estimated rotor speed is obtained directly from the electrical frequency, the slip frequency, and the rotor speed compensation with the estimated q-axis rotor flux. To precisely estimate the rotor flux, the actual value of the stator resistance, whose actual variation is reflected, is derived. For fast calculation and improved performance of the proposed algorithm, all control functions are implemented in software using a digital signal processor (DSP) with its environmental circuits. Also, it is shown through experimental results that the proposed system gives good performance for the speed-sensorless induction motor control.

  • PDF