• Title/Summary/Keyword: Slip conditions

Search Result 475, Processing Time 0.026 seconds

Operating Characteristics of Induction Motors with Broken Rotor Bar and Stator Winding Fault (회전자 바 손상 및 고정자 권선 단락 고장 조건에 따른 유도전동기의 구동 특성)

  • Jang, Seok-Myeong;Park, Yu-Seop;Choi, Jang-Young;You, Dae-Joon;Goo, Cheol-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1079-1080
    • /
    • 2011
  • This paper deals with the operating characteristics of induction motors with broken rotor bar, stator winding inter-turn short and their complex fault conditions. The considered operating characteristics are phase current, torque and speed. Since the operating characteristics of induction motors are directly related to their slip conditions, this paper built the experimental set to adjust the speed of induction motor with a permanent magnet synchronous generator connected to a load bank. From the various experimental results, it is shown that the faults do not highly affect on the operating characteristics of induction motors in low slip conditions, but the fault characteristics can be easily found in larger slip conditions.

  • PDF

A Study of Standardization of Floor Slip Test method using O-Y·PSM (경사인장형 바닥 미끄럼 시험방법의 표준화에 관한 연구)

  • Shin, Yun-Ho;Kang, Yong-Hak;Choi, Soo-Kyung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.95-96
    • /
    • 2016
  • The floor slip test method using O-Y·PSM was developed based on the risk assessment and sense of slip by the users implementing actions such as changing walking direction on a floor. This test method is regulated under the Korea Industrial Standard KS M 3510, and in the Korea Industrial Standard KS F 3230, the article of KS M 3510 is cited. Yet, in the standard, the surface condition of test or slip adjustment method is merely mentioned or difficult to be found, and thus it creates confusion in floor slip test using O-Y·PSM. Therefore, this study is to provide the useful data to revise the relative standard through the standardization study including various surface conditions of sample and slip adjustment method used in floor slip test method using O-Y·PSM.

  • PDF

Bond-slip Effect of Reinforced Concrete Building Structure under Seismic Load using Finite Element Analysis (유한요소해석을 활용한 지진하중에 대한 철근콘크리트 건축물의 부착성능 효과 연구)

  • Kim, Yeeun;Kim, Hyewon;Shin, Jiuk
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.4
    • /
    • pp.99-107
    • /
    • 2022
  • Existing reinforced concrete building structures constructed before 1988 have seismically-deficient reinforcing details, which can lead to the premature failure of the columns and beam-column joints. The premature failure was resulted from the inadequate bonding performance between the reinforcing bars and surrounding concrete on the main structural elements. This paper aims to quantify the bond-slip effect on the dynamic responses of reinforced concrete frame models using finite element analyses. The bond-slip behavior was modeled using an one-dimensional slide line model in LS-DYNA. The bond-slip models were varied with the bonding conditions and failure modes, and implemented to the well-validated finite element models. The dynamic responses of the frame models with the several bonding conditions were compared to the validated models reproducing the actual behavior. It verifies that the bond-slip effects significantly affected the dynamic responses of the reinforced concrete building structures.

Numerical Analysis of Extrusion Processes of Particle Filled Plastic Materials Subject to Slip at the Wall (미끄럼현상을 갖는 입자충전 플라스틱재료의 압출공정 수치해석)

  • 김시조;권태헌
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.10
    • /
    • pp.2585-2596
    • /
    • 1994
  • Many particle filled materials like Poweder/Binder mixtures for poweder injection moldings, have complicated rheological behaviors such as an yield stress and slip phenomena. In the present study, numerical simulation programs via a finite element method and a finite difference method were developed for the quasi-three-dimensional flows and the two-dimensional flow models, respectively, with the slip phenomena taken into account in terms of a slip velocity. In order to qualitatively understand the slip effects, typical numerical results such as vector plots, pressure contours in the cross-channel plane, and isovelocity controus for the down-channel direction were discussed with respect to various slip coefficients. Slip velocities along the boudary surfaces were also investigated to find the effects of the slip coefficient and processing conditions on the overall flow behavior. Based on extensive numerical calculations varying the slip coefficients, pressure gradient, aspect ratio, and power law index, the screw characteristics of the extrusion process were studied in particular with comparisons between the slip model and non-slip model.

MAXIMUM BRAKING FORCE CONTROL UTILIZING THE ESTIMATED BRAKING FORCE

  • Hong, D.;Hwang, I.;SunWoo, M.;Huh, K.
    • International Journal of Automotive Technology
    • /
    • v.8 no.2
    • /
    • pp.211-217
    • /
    • 2007
  • The wheel slip control systems are able to control the braking force more accurately and can be adapted to different vehicles more easily than conventional ABS (Anti-lock Brake System) systems. In realizing the wheel slip control systems, real-time information such as the tire braking force at each wheel is required. In addition, the optimal target slip values need to be determined depending on the braking objectives such as minimum braking distance and stability enhancement. In this paper, a robust wheel slip controller is developed based on the adaptive sliding mode control method and an optimal target slip assignment algorithm is proposed for maximizing the braking force. An adaptive law is formulated to estimate the braking force in real-time. The wheel slip controller is designed based on the Lyapunov stability theory considering the error bounds in estimating the braking force and the brake disk-pad friction coefficient. The target slip assignment algorithm searches for the optimal target slip value based on the estimated braking force. The performance of the proposed wheel slip control system is verified in HILS (Hardware-In-the-Loop Simulator) experiments and demonstrates the effectiveness of the wheel slip control in various road conditions.

WHEEL SLIP CONTROL WITH MOVING SLIDING SURFACE FOR TRACTION CONTROL SYSTEM

  • Chun, K.;Sunwoo, M.
    • International Journal of Automotive Technology
    • /
    • v.5 no.2
    • /
    • pp.123-133
    • /
    • 2004
  • This paper describes a robust and fast wheel slip tracking control using a moving sliding surface technique. A traction control system (TCS) is the active safety system used to prevent the wheel slipping and thus improve acceleration performance, stability and steerability on slippery roads through the engine torque and/or brake torque control. This paper presents a wheel slip control for TCS through the engine torque control. The proposed controller can track a reference input wheel slip in a predetermined time. The design strategy investigated is based on a moving sliding surface that only contains the error between the reference input wheel slip and the actual wheel slip. The used moving sliding mode was originally designed to ensure that the states remain on a sliding surface, thereby achieving robustness and eliminating chattering. The improved robustness in driving is important due to changes, such as from dry road to wet road or vice versa which always happen in working conditions. Simulations are performed to demonstrate the effectiveness of the proposed moving sliding mode controller.

Re-adhesion Control for Wheeled Robot Using Fuzzy Logic (퍼지 제어기를 이용한 이동 로봇의 재점착 제어)

  • Kwon, Sun-Ku;Huh, Uk-Youl;Kim, Hak-Il
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2423-2425
    • /
    • 2004
  • Mobility of an indoor wheeled robot is affected by adhesion force that is related to various floor conditions. When the adhesion force between driving wheels and the floor decreases suddenly, the robot has slip state. First of all, this paper models adhesion characteristics and slip in wheeled robot. Secondly, the paper proposes estimation method of adhesion force coefficient(AFC) according to slip velocity. In order to overcome this slip problem, optimal slip velocity must be decided for stable movement of wheeled robot. The paper proposes an anti-slip control system based on an ordinary disturbance observer, that is, the re-adhesion control is achieved by reducing the driving torque enough to give maximum adhesion force coefficient. fuzzy logic controller(FLC) is petty useful with slip through that compare fuzzy with PI control for the controller performance. These procedure is implemented using a Pioneer 2-DXE parameter.

  • PDF

Effect of Surface Roughness of Rheometer on the Slip Phenomenon in the Viscosity Measurement of PIM Feedstock (분말사출재의 점도 측정 시 측정기 표면 조도가 미끄럼 현상에 미치는 영향)

  • 이병옥;민상준
    • Journal of Powder Materials
    • /
    • v.9 no.4
    • /
    • pp.251-260
    • /
    • 2002
  • In the viscosity measurement of PIM feedstock, slip correction methods require a number of experiments and produce a high level of error. In this study, a rotational rheometer with a parallel-discs configuration having different surface roughness was tried to minimize the effect of the slip phenomenon. Disc surface was prepared in 3 different roughness conditions - a smooth and 2 roughened surfaces. Results with the roughened surfaces were compared with the results obtained with a slip correction method. Relationship between powder characteristics such as size and shape and a surface roughness of the disc was examined for feedstock of 4 different powders with a same binder. As results, the effect of the slip phenomenon could be sufficiently minimized on the roughened surface in most cases. However, the effect of the slip phenomenon could not be sufficiently minimized for feedstock of a round-particular-shape powder and in the case of very narrow gap size.

Wheel Slip Control of ABS Using Adaptive Control Method (적응제어 기법을 적용한 ABS의 바퀴 슬립 제어)

  • Choi, Jong-Hwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.3
    • /
    • pp.71-79
    • /
    • 2006
  • ABS is a safety device for preventing wheel locking in a sudden baking. Its control methods are classified into three types; deceleration control, wheel slip control and deceleration/acceleration control. The braking force takes the influence of the friction coefficient between road and tire, which in turn depends on the wheel slip as well as road conditions. In this paper, it has been proposed the wheel slip control system to apply the adaptive control method at the ABS. To maintain wheel slip to desired wheel slip, it have been done the linearization and designed the adaptive controller to apply gradient method based on the reference model. It is illustrated by computer simulations that the proposed control system gives good performances and adaptation to parameter variation.

  • PDF

Numerical Analysis of Microchannel Flows Using Langmuir Slip Model (Langmuir 미끄럼 모형을 사용한 미소채널 유동의 수치해석)

  • Maeng, Ju-Seong;Choe, Hyeong-Il;Lee, Dong-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.4
    • /
    • pp.587-593
    • /
    • 2002
  • The present research proposes a pressure based approach along with Langmuir slip condition for predicting microscale fluid flows. Using this method, gaseous slip flows in 2 -dimensional microchannels are numerically investigated. Compared to the DSMC simulation, statistical errors could be avoided and computing time is much less than that of the aforementioned molecular approach. Maxwell slip boundary condition is also studied in this research. These two slip conditions give similar results except for the pressure nonlinearity at high Knudsen number regime. However, Langmuir slip condition seems to be more promising because this does not need to calculate the streamwise velocity gradient accurately and to calibrate the empirical accommodation coefficient. The simulation results show that the proposed method using Langmuir slip condition is an effective tool for predicting compressibility and rarefaction in microscale slip flows.