• Title/Summary/Keyword: Slip conditions

Search Result 475, Processing Time 0.024 seconds

Analysis of higher order composite beams by exact and finite element methods

  • He, Guang-Hui;Yang, Xiao
    • Structural Engineering and Mechanics
    • /
    • v.53 no.4
    • /
    • pp.625-644
    • /
    • 2015
  • In this paper, a two-layer partial interaction composite beams model considering the higher order shear deformation of sub-elements is built. Then, the governing differential equations and boundary conditions for static analysis of linear elastic higher order composite beams are formulated by means of principle of minimum potential energy. Subsequently, analytical solutions for cantilever composite beams subjected to uniform load are presented by Laplace transform technique. As a comparison, FEM for this problem is also developed, and the results of the proposed FE program are in good agreement with the analytical ones which demonstrates the reliability of the presented exact and finite element methods. Finally, parametric studies are performed to investigate the influences of parameters including rigidity of shear connectors, ratio of shear modulus and slenderness ratio, on deflections of cantilever composite beams, internal forces and stresses. It is revealed that the interfacial slip has a major effect on the deflection, the distribution of internal forces and the stresses.

Finite Element Analysis of Strip Drawing Including the Evolution of Material Damage (재료결함의 성장을 포함하는 스트립 드로잉 공정의 유한요소해석)

  • Hahm, Seung-Yeun;Lee, Yong-Shin
    • Transactions of Materials Processing
    • /
    • v.3 no.1
    • /
    • pp.120-132
    • /
    • 1994
  • Strip drawing of strain-hardening, viscoplastic materials with damage is analyzed by a rigid plastic finite element method. A process model is formulated using two state variables, one for strain hardening from slip dominated plastic distortion and the other for damage from growth of microvoids. Application of the model to aluminum strip drawing is given via implementation in a consistent penalty finite element formulation. The predicted density changes as a result of void growth are compared to those from experiments reported in the literature. The effects of drawing conditions such as drawing speed and die angle on the mechanical property chages are studied.

  • PDF

A Study on the Analysis for Aerodynamic design of centrifugal Compressor of the Marine Turbocharger (박용 터보챠저 원심압축기의 공력설계에 대한 해석적 연구)

  • Oh, Kook-Taek;Kim, Hong-Won;Ghal, Sang-Hak;Ha, Ji-Soo;Ryu, Seung-Chan
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.649-654
    • /
    • 2001
  • This paper describes aerodynamic preliminary design performance prediction and flow analysis for centrifugal compressor of the marine middle engine turbocharger. The performance characteristics of turbocharger compressor are investigated at various operating conditions using mass flow rate and revolution speed, and computational flow analysis for impeller and diffuser at design point are performed. Preliminary design results correspond to actual compressor geometric values comparatively by applying modified slip factor. Performance prediction and flow analysis results show good agreement with experiments. Therefore, this will provide the performance prediction in preliminary design, and help to increase the design capability for optimized impeller.

  • PDF

Abnormal Vibration Diagnosis of High Pressure LNG Pump (고압 LNG 펌프의 이상 진동 진단)

  • Kim, H.E.;Choi, B.K.
    • Journal of Power System Engineering
    • /
    • v.9 no.2
    • /
    • pp.45-49
    • /
    • 2005
  • Liquefied natural gas takes up six hundredths of the volume of natural gas, which makes storage and transportation much easier. To send out natural gas via a pipeline network across the nation, high-pressure LNG pumps supply highly compressed LNG to high-pressure vaporization facilities. The Number of high-pressure LNG pumps determined the send-out amount in LNG receiving terminal. So it is main equipment at LNG production process and should be maintained on best conditions. In this paper, to find out the cause of high beat vibration at cryogenic pumps, vibration and motor current signal analysis have been performed. High vibration of cryogenic pumps could be reduced due to the modification of motor rotor.

  • PDF

Dynamic Analysis of Automotive Belt Drive Systems (자동차 동력전달용 일체 벨트구동계의 동특성 해석)

  • 오석일;송재수;김성원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.6
    • /
    • pp.109-120
    • /
    • 1996
  • Serpentine belt drive system offers the advantages of light weigh, low cost, quientness, and efficiency. Since these belts are typically longer than conventional belts, a tensioner component is added to maintain acceptable belt tension levels and make no slippage between pulleys and belts. This paper addresses the modeling and analysis of the automotive belt drive systems and also addresses the predicton of slippage on rotational modes. Vibration characteristics are determined from the eigenvalue problem governing the free response. Under certain engine operating conditions, the dynamic tension fluctuations may be sufficient to cause the belt to slip on particular accessory pulleys, It is found that this slippage can be reduced by adding the tensioner component from the analysis of belt tension and belt compression.

  • PDF

Performance Analysis of the Centrifugal Pump Impeller Using Commercial CFD Code (상용 CFD코드를 이용한 원심펌프 임펠러의 성능해석)

  • Choi, Young-Seok;Lee, Yong-Kab;Hong, Soon-Sam;Kang, Shin-Hyung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.4 no.1 s.10
    • /
    • pp.38-45
    • /
    • 2001
  • A commercial CFD code is used to compute the 3-D viscous flow field within the impeller of a centrifugal pump. Several preliminary numerical calculations are carried out to determine the influence of the parameters such as the grid systems, the numerical schemes, the turbulence models and the shape of the vaneless diffusers at the design flow rate. The results of the preliminary study are used for the calculation of the off-design flow conditions. The circumferentially averaged results such as the radial and tangential velocities, the exit flow angle, the slip factor, the static pressure and the total pressure are compared with the experimental data at the impeller exit to discuss the influence of the prescribed parameters.

  • PDF

INTEGRATED VEHICLE CHASSIS CONTROL WITH A MAIN/SERVO-LOOP STRUCTURE

  • Li, D.;Shen, X.;Yu, F.
    • International Journal of Automotive Technology
    • /
    • v.7 no.7
    • /
    • pp.803-812
    • /
    • 2006
  • In order to reduce the negative effects of dynamic coupling among vehicle subsystems and improve the handling performance of vehicle under severe driving conditions, a vehicle chassis control integration approach based on a main-loop and servo-loop structure is proposed. In the main-loop, in order to achieve satisfactory longitudinal, lateral and yaw response, a sliding mode controller is used to calculate the desired longitudinal, lateral forces and yaw moment of the vehicle; and in the servo-loop, a nonlinear optimizing method is adopted to compute the optimal control inputs, i.e. wheel control torques and active steering angles, and thus distributes the forces and moment to four tire/road contact patches. Simulation results indicate that significant improvement in vehicle handling and stability can be expected from the proposed chassis control integration.

Vibration Diagnosis of High Pressure LNG Pump (고압 LNG 펌프의 진동 진단)

  • Choi, Byeong-Geun;Kim, Hak-Eun;Choi, Chang-Lim;Lee, Jae-Myeong;Bang, Sang-Su
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.776-779
    • /
    • 2005
  • Liquefied Natural Gas takes up six hundredths of the volume of natural gas, which makes storage and transportation much easier. To send out natural gas via a pipeline network across the nation, high pressure LNG pumps supply highly compressed LNG to high-pressure vaporization facilities. The Number of high Pressure LNG pumps determined the send out amount in LNG receiving terminal. So it is main equipment at LNG production process and should be maintained on best conditions. In this paper, to find out the cause of high beat vibration at cryogenic pumps, vibration and motor current analysis have been performed. And high beat vibration of cryogenic pumps could be reduced due to the modification of motor rotor.

  • PDF

Burrless shearing of the micro wire (미세 와이어의 버 없는 전단에 관한 연구)

  • Kim Woong-Kyum;Hong Nam-Pyo;Kim Heon-Young;Kim Byeong-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.6 s.183
    • /
    • pp.52-56
    • /
    • 2006
  • Punching tools like an electrodes are made by milling or etching or EDM. These methods had time consuming, low efficiency and air pollution. So, we have developed a shearing device which counter punching method for burrless cutting of micro wire. Using the straightened SUS304 wire with $200{\mu}m$ diameter, we confirmed the tendency of the shear plane for punch tools. It was impossible to completely remove the bun in the shearing process. In order to minimize the burr size and fine shear plane, we have accomplished the various experiment conditions such as the U-groove, the effect of the counter punch, shear angle and clearance. The results of the experiments show that indentation, slip plane and bent shape were related to the shear angle and clearance.

Numerical Analysis of the Three-Dimensional Nonlinear Waves Caused by Breaking Waves around a Floating Offshore Structure (부유식 해양구조물 주위의 쇄파현상을 동반한 3차원 비선형성 파의 수치해석)

  • 박종천;관전수명
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.62-73
    • /
    • 1996
  • Numerical simulation is made of the three-dimensional wave breaking motion about a part of a floating offshore structure containing a circular cylinder mounted vertically onto a lower hull in regular periodic gravity wave generated by a numerical wave maker. TUMMAC-VIII finite-difference method is newly developed for such a problem. By use of density-function technique the three-dimensional wave breaking motion is approximately implenented in the framework of rectangular grid system. A porosity technique is devised for the implementation of the no-slip bydy boundary conditions. The generation of breaking waves by the interaction of incident waves with the structure is well simulated and interesting features of breaking waves are revealed with containing degree of quantitative and qualitative accuracy.

  • PDF