• 제목/요약/키워드: Slip Parameter

검색결과 164건 처리시간 0.029초

스풀 액추에이터의 노치 특성 (Notch Characteristics of Spool Actuator)

  • 윤소남;강보식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.751-756
    • /
    • 2008
  • This paper presents the fluid characteristics of the spool actuator used for construction vehicles. A spool actuator is used for directional control of pressurized fluid and has a roll to lock the fluid flow. It is important to design the spool actuator optimally because this actuator is actuated in the sleeve by sliding motion and has some critical design parameters such as stick-slip, leakage and shock pressure. The parameters like stick-slip and leakage can be solved by precision manufacturing but the shock pressure which is taken place when the fluid direction is changed needs the parameter analysis procedure throughly. In this study, mathematical modeling and 2 & 3 phase flow dynamics analysis of the spool actuator were achieved. Using suggested model, all possible operating conditions were analyzed.

  • PDF

섬유강화 고분자 복합재료의 압축성형에 있어서 인장점성과 전단점성을 고려한 유동해석 (Simulation of Compression Molding with Extensional & Shear Viscosity for Fiber-Reinforced Polymeric Composites)

  • 조선형;김이곤
    • 소성∙가공
    • /
    • 제6권4호
    • /
    • pp.311-318
    • /
    • 1997
  • In recent years, compression molding of fiber-reinforced thermoplastics has been increased in commercial aspects. During a compression molding process of composites, the flow analysis must be developed in order to accurately predict the finished part properties as a function of the molding process parameters. In this paper, a new model is presented which can be used to predict the flow under consideration of the slip of mold-composites and extensional & shear viscosity ratio M and slip parameter$\alpha$ on the mold filling parameters are discussed.

  • PDF

인방보에 마찰형 감쇠기가 설치된 전단벽의 제진효과 (Control Effectiveness of Shear Walls Connected by Beams with Friction Dampers)

  • 정희산;민경원
    • 한국전산구조공학회논문집
    • /
    • 제22권1호
    • /
    • pp.105-115
    • /
    • 2009
  • 휨거동을 하는 전단벽을 대상으로 동일한 총 단면적을 갖는 1개의 전단벽과 마찰형 감쇠기로 연결된 전단벽의 내진성능을 수치해석을 통해 비교하였다. KBC 2005 설계스펙트럼을 근거로 축소 조절한 7개의 지진파를 입력하중으로 마찰형 감쇠기가 설치된 전단벽의 평균응답을 분석하였다. 마찰형 감쇠기의 중요한 설계변수인 기준 마찰력인 슬립하중은 각층의 마찰형 감쇠기 위치에 생기는 수직방향 전단력의 총합의 5, 10, 20, 30, 60, 90%값으로 하여 슬립이 특정한 층에 편중되지 않도록 하였다. SeismoSturct 프로그램을 이용해 비선형시간이력 해석을 수행하여 밑면 전단력, 에너지 소산량, 1층 벽체곡률, 최상층변위 측면에서 마찰 감쇠기의 제진성능을 분석하였다. 기준마찰력의 30%이하 수준의 총 마찰력을 갖는 마찰 감쇠기가 우수한 제진성능을 보였다.

유한요소법을 이용한 자기부상용 선형유도기의 운전 특성 분석법 (Analysis on Driving Performance of Linear Induction Motor for Maglev System by Finite Element Method)

  • 김기찬
    • 한국산학기술학회논문지
    • /
    • 제15권7호
    • /
    • pp.4469-4474
    • /
    • 2014
  • 본 논문에서는 유한요소법을 사용하여 자기부상열차용 선형 유도 전동기의 효율적인 운전곡선 도출 방법을 제안한다. 긴 시간의 동특성 해석을 위해 선형유도기 모델을 선형에서 회전형 타입으로 변환하고, 제어시 필요한 슬립 파라미터를 전자장 해석을 통하여 효과적으로 도출하였다. 견인용 선형유도전동기는 인버터에 의해 저속의 정토크 영역에서는 전압/주파수 (V/f) 일정제어를 수행하고, 고속에서의 정출력 영역에서는 전압을 고정시키고 주파수를 증가시키면서 제어한다. 따라서 논문에서는 정토크 및 정출력 영역의 운전 특성을 도출하기 위해 각 구간에서 일정한 스텝으로 슬립특성 곡선을 도출하고, 차량의 운전 상태에 따른 슬립 및 주파수를 특성곡선의 보간법에 의해 결정한다. 본 방법을 이용하면 차량의 임의의 부하상태에 따라 최적의 운전 지령을 제시할 수 있다.

Urea-SCR 시스템의 NH3 흡·탈착 특성 및 모델기반 제어 연구 (A Study of NH3 Adsorption/Desorption Characteristics and Model Based Control in the Urea-SCR System)

  • 함윤영;박수열
    • 한국자동차공학회논문집
    • /
    • 제24권3호
    • /
    • pp.302-309
    • /
    • 2016
  • Urea-SCR system is currently regarded as promising NOx reduction technology for diesel engines. SCR system has to achieve maximal NOx conversion in combination with minimal $NH_3$ slip. In this study, model based open loop control for urea injection was developed and assessed in the European Transient Cycle (ETC) for heavy duty diesel engine. On the basis of the transient modeling, the kinetic parameters of the $NH_3$ adsorption and desorption are calibrated with the experimental results performed over the zeolite based catalyst. $NH_3$ storage or surface coverage of SCR catalyst can not be measured directly and has to be calculated, which is taken into account as a control parameter in this model. In order to reduce $NH_3$ slip while maintaining NOx reduction, $NH_3$ storage control algorithm was applied to correct the basic urea quantity. If the actual $NH_3$ surface coverage is higher than the maximal $NH_3$ surface coverage, the urea injection quantity is significantly reduced in the ETC cycle. By applying this logic, the resulting $NH_3$ slip peak can be avoided effectively. With optimizing the kinetic parameters based on standard SCR reaction, it suggests that a simplified, less accurate model can be effective to evaluate the capability of model based control in the ETC cycle.

Data driven inverse stochastic models for fiber reinforced concrete

  • Kozar, Ivica;Bede, Natalija;Bogdanic, Anton;Mrakovcic, Silvija
    • Coupled systems mechanics
    • /
    • 제10권6호
    • /
    • pp.509-520
    • /
    • 2021
  • Fiber-reinforced concrete (FRC) is a composite material where small fibers made from steel or polypropylene or similar material are embedded into concrete matrix. In a material model each constituent should be adequately described, especially the interface between the matrix and fibers that is determined with the 'bond-slip' law. 'Bond-slip' law describes relation between the force in a fiber and its displacement. Bond-slip relation is usually obtained from tension laboratory experiments where a fiber is pulled out from a matrix (concrete) block. However, theoretically bond-slip relation could be determined from bending experiments since in bending the fibers in FRC get pulled-out from the concrete matrix. We have performed specially designed laboratory experiments of three-point beam bending with an intention of using experimental data for determination of material parameters. In addition, we have formulated simple layered model for description of the behavior of beams in the three-point bending test. It is not possible to use this 'forward' beam model for extraction of material parameters so an inverse model has been devised. This model is a basis for formulation of an inverse model that could be used for parameter extraction from laboratory tests. The key assumption in the developed inverse solution procedure is that some values in the formulation are known and comprised in the experimental data. The procedure includes measured data and its derivative, the formulation is nonlinear and solution is obtained from an iterative procedure. The proposed method is numerically validated in the example at the end of the paper and it is demonstrated that material parameters could be successfully recovered from measured data.

Second Order Bounce Back Boundary Condition for the Latice Boltzmann Fluid Simulation

  • Kim, In-Chan
    • Journal of Mechanical Science and Technology
    • /
    • 제14권1호
    • /
    • pp.84-92
    • /
    • 2000
  • A new bounce back boundary method of the second order in error is proposed for the lattice Boltzmann fluid simulation. This new method can be used for the arbitrarily irregular lattice geometry of a non-slip boundary. The traditional bounce back boundary condition for the lattice Boltzmann simulation is of the first order in error. Since the lattice Boltzmann method is the second order scheme by itself, a boundary technique of the second order has been desired to replace the first order bounce back method. This study shows that, contrary to the common belief that the bounce back boundary condition is unilaterally of the first order, the second order bounce back boundary condition can be realized. This study also shows that there exists a generalized bounce back technique that can be characterized by a single interpolation parameter. The second order bounce back method can be obtained by proper selection of this parameter in accordance with the detailed lattice geometry of the boundary. For an illustrative purpose, the transient Couette and the plane Poiseuille flows are solved by the lattice Boltzmann simulation with various boundary conditions. The results show that the generalized bounce back method yields the second order behavior in the error of the solution, provided that the interpolation parameter is properly selected. Coupled with its intuitive nature and the ease of implementation, the bounce back method can be as good as any second order boundary method.

  • PDF

VIS를 이용한 전기기기 특성 해석 (Characteristic Analysis of Motor using VIS)

  • 이인용;김양우;김영문
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 전문대학교육위원
    • /
    • pp.126-129
    • /
    • 2004
  • This paper presents the way to analyze the static and dynamic characteristics of the Compound motor and 3 phase slip ring motor using VIS (Virtual Instrument System) and Agilent VEE, GUI(Graphics User Interface) tool. This method is composed of real time measuring of various characteristics, which can't measure using analog meter and analyzer, and presenting and analyzing the static and dynamic characteristics by table, which calculates the measured parameter. Also, this can apply to the various parts.

  • PDF

과전류 부하에서 5상 농형 유도전동기의 정수 특성 (Parameters Estimation Characteristics of Five-Phase Squirrel-Cage Induction Motor within Over Current Load)

  • 김민회
    • 조명전기설비학회논문지
    • /
    • 제29권7호
    • /
    • pp.38-46
    • /
    • 2015
  • This paper propose a variable parameter estimations for variable over current load of five-phase squirrel-cage induction motor(IM) to servo control system. In order to high performance control of AC motor using a field oriented control(FOC) and direct torque control(DTC) algorithm, there are required precise motor parameters for slip calculation, flux observer, controller gain, torque command of current components, rotor position, speed estimation, and so on. We are suggest a analyzed estimation results of the motor parameters that developing five-phase squirrel-cage IM have a stator of concentrated winding for experimental within variable over current load at rated input frequency. There are results of stator winding measurement, no-load test, locked-rotor test, variable over current load test, and estimated parameters of equivalent circuits using manufactured experimental apparatus by IEEE Standard Test Procedure for Polyphase Induction Motors and Generators 112-2004.

5상 농형 유도전동기의 정수 추정 (Parameters Estimation of Five-phase Squirrel-Cage Induction Motor)

  • 김민회
    • 전기학회논문지P
    • /
    • 제61권4호
    • /
    • pp.199-205
    • /
    • 2012
  • This paper propose a improved parameter estimations of five-phase squirrel-cage induction motor(IM) for speed control system on field oriented control(FOC). In order to high performance control of ac the motors using a FOC and DTC(direct torque control) algorithm, there are required precise motor parameters for slip calculation, flux observer, controller gain, rotor position and speed estimation, and so on. We are suggest a estimation method of the motor parameters that developing five-phase squirrel-cage IM have a stator of concentrated winding for experimental. There are results of stator winding test, no-load test, locked rotor test, and obtained equivalent circuits using manufactured experimental apparatus. For presenting the superior performance of the speed control system in adapted the parameters, experimental results are presented using a 32-bit fixed point TMS320F2812 DSP with 1.5[KW] IM.