• Title/Summary/Keyword: Slip Factor

Search Result 218, Processing Time 0.028 seconds

Multi-criteria performance-based optimization of friction energy dissipation devices in RC frames

  • Nabid, Neda;Hajirasouliha, Iman;Petkovski, Mihail
    • Earthquakes and Structures
    • /
    • v.18 no.2
    • /
    • pp.185-199
    • /
    • 2020
  • A computationally-efficient method for multi-criteria optimisation is developed for performance-based seismic design of friction energy dissipation dampers in RC structures. The proposed method is based on the concept of Uniform Distribution of Deformation (UDD), where the slip-load distribution along the height of the structure is gradually modified to satisfy multiple performance targets while minimising the additional loads imposed on existing structural elements and foundation. The efficiency of the method is demonstrated through optimisation of 3, 5, 10, 15 and 20-storey RC frames with friction wall dampers subjected to design representative earthquakes using single and multi-criteria optimisation scenarios. The optimum design solutions are obtained in only a few steps, while they are shown to be independent of the selected initial slip loads and convergence factor. Optimum frames satisfy all predefined design targets and exhibit up to 48% lower imposed loads compared to designs using a previously proposed slip-load distribution. It is also shown that dampers designed with optimum slip load patterns based on a set of spectrum-compatible synthetic earthquakes, on average, provide acceptable design solutions under multiple natural seismic excitations representing the design spectrum.

Mechanical behavior of prefabricated steel-concrete composite beams considering the clustering degree of studs

  • Gao, Yanmei;Fan, Liang;Yang, Weipeng;Shi, Lu;Zhou, Dan;Wang, Ming
    • Steel and Composite Structures
    • /
    • v.45 no.3
    • /
    • pp.425-436
    • /
    • 2022
  • The mechanical behaviors of the prefabricated steel-concrete composite beams are usually affected by the strength and the number of shear studs. Furthermore, the discrete degree of the arrangement for shear stud clusters, being defined as the clustering degree of shear stud λ in this paper, is an important factor for the mechanical properties of composite beams, even if the shear connection degree is unchanged. This paper uses an experimental and calculation method to investigate the influence of λ on the mechanical behavior of the composite beam. Five specimens (with different λ but having the same shear connection degree) of prefabricated composite beams are designed to study the ultimate supporting capacity, deformation, slip and shearing stiffness of composite beams. Experimental results are compared with the conventional slip calculation method (based on the influence of λ) of prefabricated composite beams. The results showed that the stiffness in the elastoplastic stage is reduced when λ is greater than 0.333, while the supporting capacity of beams has little affected by the change in λ. The slip distribution along the beam length tends to be zig-zagged due to the clustering of studs, and the slip difference increases with the increase of λ.

Experimental Study on the Slip Coefficient with Member Type and Dimensions of High Tension Bolt Hole (부재 및 고장력볼트 구멍치수에 따른 미끄러짐계수의 실험적 연구)

  • Yang, Seung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.9
    • /
    • pp.4277-4283
    • /
    • 2012
  • Slip coefficient, whose value is dependent on the condition of contact surface at the friction joint of high tension bolt, is determined by slip load. Because contact area affects slip load, contact area that varies with bolt hole size is also related to the slip coefficient. In this study, we manufactured 32 specimens and performed bending and tension tests in order to examine changes in slip coefficient and load with material type, bolt diameter, and size of bolt hole. Slip load of specimens with oversize bolt hole had strength that was more than 80% higher than the slip load of specimens with standard bolt hole, and it also exceeded the design slip strength. In addition, we observed significant correlation between net-section ratio and slip ratio of specimens with oversize and standard bolt hole. However, some differences between the specimens are thought to have been caused by reduction in initial axial force of high tension bolt, which is an important parameter of slip coefficient. It is self-evident that increased bolt hole size would lead to decrease in design strength as it reduces both slip coefficient and bolt axial force. Nevertheless, we suggest that some flexibility in regulation of bolt hole, as long as it does not threaten the structural stability, may be a positive factor in terms of workability and efficiency.

A New Slip Power Recovery System by Switch Mode Converter (스위치모드 컨버터에 의한 새로운 슬립전력 회수시스템)

  • 박한웅;박성준;김철우;황영문
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.1
    • /
    • pp.73-81
    • /
    • 1999
  • A new slip power recovery system applying a switch mode converter to the rotor circuit of the wound rotor induction machine is proposed and investigated in this paper. With the analysis of the steady-state performances of the proposed system, it can be shown that the speed can be controlled by the duty ratio of the converter switch and the several characteristics of a conventional system can be also improved. In particular, the low power factor and the harmonic components in the line current, which are the main disadvantages of the conventional system, is significantly improved, and linear speed regulation can be obtained. Theoretical and experimental results are presented and illustrated to demonstrate the satisfactory working of the proposed system.

Analysis of Steady State Characteristics of Doubly-Fed Induction Generator in Wind Turbine system (이중여자 유도발전 풍력시스템의 정상상태 특성 해석)

  • Jang, Bo-Kyoung;Ro, Kyoung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.460_461
    • /
    • 2009
  • This paper analyzes the steady state characteristics for variable speed wind power system with doubly-fed induction generator(DFIG). This paper explains the equivalent circuit and phasor diagram of DFIG for different operating conditions. It also simulates the torque-slip characteristics with respect to changes of different parameters. Simulation results show the torque-slip characteristics, stator power factor-rotor voltage and stator current-rotor voltage.

  • PDF

Rear Drum Brake Grunt(stick-slip) Noise Improvement on Braking During Nose-dive & Return Condition (제동시 발생하는 리어 드럼브레이크 Grunt(stick-slip) Noise 개선)

  • Hong, Ilmin;Jang, Myunghoon;Kim, Sunho;Choi, Hongseok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.9
    • /
    • pp.781-788
    • /
    • 2013
  • Grunt(stick-slip) noise happens between rear lining and drum on braking condition while vehicle is returning to steady position after nose-dive. The study presents a new testing and analysis methods for improving brake grunt noise on vehicle. Grunt noise is called a kind of stick slip noise with below 1 kHz frequency that is caused by the surfaces alternating between sticking to each other and sliding over each other with a corresponding change in friction force. This noise is typically come from that the static friction coefficient of surfaces is much higher than the kinetic friction coefficient. For the identification of the excitation mechanism and improvement of grunt noise, it is necessary to study variable parameters of rear drum brake systems on vehicle and to implement CAE analysis with stick slip model of drum brake. The aim of this study has been to find solution parameters throughout test result on vehicle and dynamo test. As a result of this study, it is generated from stick slip between rear lining and rear drum and it can be solved to reduce contact angle of lining with asymmetric and is effected not only brake drum strength but also rear brake size and brake factor.

Rear drum brake grunt (stick-slip) noise improvement on braking during nose-dive & return condition (제동시 발생하는 리어 드럼브레이크 grunt (stick-slip) noise 개선)

  • Hong, Ilmin;Jang, Myunghoon;Kim, Sunho;Choi, Hongseok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.743-749
    • /
    • 2012
  • Grunt (Stick-slip) noise happens between rear lining and drum on braking condition while vehicle is returning to steady position after nose-dive. The study presents a new testing and analysis methods for improving brake grunt noise on vehicle. Grunt noise is called a kind of stick slip noise with below 1kHz frequency that is caused by the surfaces alternating between sticking to each other and sliding over each other with a corresponding change in friction force. This noise is typically come from that the static friction coefficient of surfaces is much higher than the kinetic friction coefficient. For the identification of the excitation mechanism and improvement of grunt noise, it is necessary to study variable parameters of rear drum brake systems on vehicle and to implement CAE analysis with stick slip model of drum brake. The aim of this study has been to find solution parameters throughout test result on vehicle and dynamo test. As a result of this study, it is generated from stick slip between rear lining and rear drum and it can be solved to reduce contact angle of lining with asymmetric and is effected not only brake drum strength but also rear brake size and brake factor.

  • PDF

Hysteretic Damage Model for Reinforced Concrete Joints Considering Bond-Slip (부착-슬립을 고려한 철근콘크리트 접합부의 이력 손상 모델 개발)

  • Kim, Do-Yeon;Choi, In-Kil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.517-528
    • /
    • 2008
  • This paper presents a hysteretic damage model for reinforced concrete (RC) joints that explicitly accounts for the bond-slip between the reinforcing bars and the surrounding concrete. A frame element whose displacement fields for the concrete and the reinforcing bars are different to permit slip is developed. From the fiber section concept, compatibility equations for concrete, rebar, and bond are defined. Modification of the hysteretic stress-strain curve of steel is conducted for partial unloading and reloading conditions. Local bond stress-slip relations for monotonic loads are updated at each slip reversal according to the damage factor. The numerical applications of the reinforcing bar embedded in the confined concrete block, the RC column anchored in the foundation, and the RC beam-column subassemblage validate the model accuracy and show how including the effects of bond-slip leads to a good assessment of the amount of energy dissipation during loading histories.

A Study on the Determination of Slip-up Time for Slip-Form System using Surface Wave Velocity (표면파 속도를 이용한 슬립폼 시스템 상승 시기 결정에 관한 연구)

  • Kim, Heeseok;Kim, Young Jin;Chin, Won Jong;Yoon, Hyejin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5D
    • /
    • pp.483-492
    • /
    • 2012
  • The early setting time of concrete is an important factor determining the slip up velocity of the slip-form system. Accordingly, need is for a technique evaluating the early setting time in order to secure the safety of the slip-form system and the construction quality of concrete. This paper intends to estimate the early setting time by evaluating the setting degree of concrete using surface wave velocity so as to determine the slip up time of the slip-form system. Penetration resistance test and compressive strength test are performed first to clarify the relationship between the early setting time of concrete and the compressive strength. Then, compressive strength test and ultrasonic wave test are conducted to examine the relation between the compressive strength and the surface wave velocity. Continuous wavelet transform is adopted to measure the surface wave velocity. Numerical analysis is carried out to demonstrate the appropriateness of the application of continuous wavelet transform. Based on these results, the propagation velocity of the surface wave required for the slip up of slip-form system is suggested. Finally, a reduced model test of the slip-form system is conducted to verify the feasibility of the proposed surface wave velocity for the determination of th slip up velocity.

LBM simulation on friction and mass flow analysis in a rough microchannel

  • Taher, M.A.;Kim, H.D.;Lee, Y.W.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1237-1243
    • /
    • 2014
  • The aim of the present paper is to analyze the friction and mass flow in a rough microchannel using Lattice Boltzmann Method (LBM). The LBM is a kinetic method based on the particle distribution function, so it can be fruitfully used to study the flow dependence on Knudsen number including slip velocity, pressure drop in rough microchannel. The surface roughness elements are taken to be considered as a series of circular shaped riblets throughout the channel with relative roughness height up to a maximum 10% of the channel height. The friction coefficients in terms of Poiseuille number (Pn), mass flow rate and the flow behaviors have been discussed in order to study the effect of surface roughness in the slip flow regime at Knudsen number (Kn), ranging from 0.01 to 0.10. It is seen that the friction factor and the flow behaviors in a rough microchannel strongly depend on the rarefaction effect and the relative roughness height. The friction factor in a rough microchannel is higher than that in smooth channel but the mass flow rate is lower than that of smooth channel. Moreover, it is seen that the friction factor increased with relative roughness height but decreased with increasing the Kundsen number (Kn) whereas the mass flow rate is decreased with increasing both of surface roughness height and Knudsen number.