• 제목/요약/키워드: Slip Control

검색결과 599건 처리시간 0.033초

Semi-active friction dampers for seismic control of structures

  • Kori, Jagadish G.;Jangid, R.S.
    • Smart Structures and Systems
    • /
    • 제4권4호
    • /
    • pp.493-515
    • /
    • 2008
  • Semi-active control systems have attracted a great deal of attention in recent years because these systems can operate on battery power alone, proving advantageous during seismic events when the main power source of the structure may likely fail. The behavior of semi-active devices is often highly non-linear and requires suitable and efficient control algorithm. This paper presents the comparative study and performance of variable semi-active friction dampers by using recently proposed predictive control law with direct output feedback. In this control law, the variable slip force of semi-active variable friction damper is kept slightly lower than the critical friction force, which allows the damper to remain in the slip state during an earthquake, resulting in improved energy dissipation capability. This control algorithm is able to produce a continuous and smooth slip forces for a variable friction damper. The numerical examples include a structure controlled with multiple variable semi-active friction dampers and with multiple passive friction dampers. A parameter, gain multiplier defined as the ratio of damper force to critical damper control force, is investigated under four different real earthquake ground motions, which plays an important role in the present control algorithm of the damper. The numerically evaluated optimum parametric value is considered for the analysis of the structure with dampers. The numerical results of the variable friction dampers show better performance over the passive dampers in reducing the seismic response of structures.

범용 인버터에 의한 선형유도 전동기의 폐루프 제어 방식에 관한 연구 (A Study on Closed Loop Control of a Linear Induction Motor Using General Purpose Frequency Inverter)

  • 오성철;김은수;김용주;김요희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1991년도 하계학술대회 논문집
    • /
    • pp.641-644
    • /
    • 1991
  • Constant slip frequency operation of linear infliction motor is essential for the stable levitation. Control scheme for the constant slip frequency with general purpose frequency inverter is proposed, Speed sensing scheme with proximitity switch for the speed feedback is also proposed. Optimal slip frequency, at which normal force is equal to 0, is selected by the experiment. This slip frequency is a comand to the controller. It shows good characteristic during acceleration and deceleration.

  • PDF

선형유도전동기의 고효율 운전을 위한 슬립주파수 제어 (SLIP FREQUENCY CONTROL FOR HIGH EFFICIENCY DRIVE OF SINGLE-SIDED LINEAR INDUCTION MOTOR)

  • 임달호;김규탁;박승찬;권오문
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1992년도 하계학술대회 논문집 B
    • /
    • pp.689-691
    • /
    • 1992
  • In this study, slip frequency control for a single-sided linear induction motor(SLIM) is discussed. We adopted variable slip frequency pattern in stead of constant slip frequency pattern under V/f constant mode, which is effective in improving driving efficiency of SLIM. And the dynamic characteristics are analyzed by using equivalent circuit during the accelerating time.

  • PDF

High performance torque control of induction motor by speed sensorless vector control

  • Harashima, Fumio;Kondo, Seiji;Inoue, Shuji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.1410-1414
    • /
    • 1990
  • A method of speed sensorless vector control of induction motor is proposed in this paper. This method uses the slip frequency estimated by only the primary voltage and current. As this slip frequency accords with the command value of it, the commanded primary frequency is controlled. The validity of the method is confirmed by the simulation and experimental results.

  • PDF

근전위 신호구동형 전동의수의 파지력 제어 (Grip Force Control of Myoelectric Signal Driving Type Myoelectric Hand Prosthesis)

  • 최기원;최규하;신우석
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2007년도 하계학술대회 논문집
    • /
    • pp.340-342
    • /
    • 2007
  • This paper presents the grip force control of myoelectric hand prosthesis according to myoelectric signal generated in the human muscle. The control system consist of a controller for driving DC motor, torque sensor for measuring out torque of motor, slip sensor for detecting slip of torque. The experimental results proved the reliability of proposed control system.

  • PDF

공작기계 이송계의 Stick-Slip 특성에 관한 연구 (A study on the Stick-slip Characteristic of Machine Tool Feeding System.)

  • 박종권;이후상
    • 한국기계연구소 소보
    • /
    • 통권18호
    • /
    • pp.29-35
    • /
    • 1988
  • When low sliding velocities in the boundary lubrication range are operating, irregular movements frequently occur which are a result of the stick-slip phenomenon. Such slide motions are undesirable in precision machine tools, particularly with feed back systems used in numerical and adaptive control machine tools. Accordingly, this paper reports analytical and experimental studies in the stick-slip characteristic of machine tool feeding system. The main conclusions of this study are as follows; The tendency towards stick-slip effects may be reduced by; 1). Reducing the drop in friction coefficient in the Stribeck curve(on the rising part of the friction characteristic at higher sliding speeds, the system is stable all the time) 2). Reducing the transition velocity by the use of a higher viscosity lubricating oil. 3). Increasing the stiffness(Damping)and reducing normal load(Sliding mass) Therefore, the Critical velocity is decided from the above conclusions and in designing of machine tool, feed rates(sliding velocity)must be design the more than critical velocity.

  • PDF

스로틀 개도 제어와 부하토크 추정을 이용한 엔진 제어 방식 TCS (Engine Control TCS using Throttle Angle Control and Estimated Load Torque)

  • 강상민;윤마루;선우명호
    • 한국자동차공학회논문집
    • /
    • 제12권2호
    • /
    • pp.139-147
    • /
    • 2004
  • The purpose of engine control TCS is to regulate engine torque to keep driven wheel slip in a desired range. In this paper, engine control TCS using sliding mode control law based on engine model and estimated load torque is proposed. This system includes a two-level controller. Slip controller calculates desired wheel torque, and engine torque controller determines throttle angle for engine torque corresponding to desired wheel torque. Another issue is to measure load torque for model based controller design. Luenberger observer with state variables of load torque and engine speed solves this problem as estimating load torque. The performance of controller and observer is certificated by simulation using 8-degree vehicle model, Pacejka tire model, and 2-state engine model. The simulation results in various maneuvers during slippery and split road conditions showed that acceleration performance and ability of the vehicle with TCS is improved. Also, the load torque observer could estimate real load torque very well, so its performance was proved.

유도전동기 회전자 저항 보상을 위한 벡터제어 (Vector Control for the Rotor Resistance Compensation of Induction Motor)

  • 박현철;이수원;김영민;황종선
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집 Vol.14 No.1
    • /
    • pp.65-68
    • /
    • 2001
  • In the vector control methods of induction motor, the stator current is divided into the flux and torque component current. By controlling these components respectively, the methods control independently flux and torque as in the DC motor and improve the control effects. To apply the vector control methods, the position of the rotor current is identified. The indirect vector control use the parameters of the machine to identify the position of rotor flux. But due to the temperature rise during machine operation, the variation of rotor resistance degrades the vector control. To solve the problem, the q-axis is aligned to reference frame without phase difference by comparing the real flux component with the reference flux component. Then to compensate the slip, PI controller is used. The proposed method keeps a constant slip by compensating the gain of direct slip frequency when the rotor resistance of induction motor varies. To prove the validations of the proposed algorithm in the paper, computer simulations is executed.

  • PDF

각가속도 변화에 의해 탐지된 슬립에 기반한 주행로봇의 견인력 제어 (Traction Control of Mobile Robot Based on Slippage Detection by Angular Acceleration Change)

  • 최현도;우춘규;강현석;김수현;곽윤근
    • 제어로봇시스템학회논문지
    • /
    • 제15권2호
    • /
    • pp.184-191
    • /
    • 2009
  • The common requirements of rough terrain mobile robots are long-term operation and high mobility in rough terrain to perform difficult tasks. In rough terrain, excessive wheel slip could cause an increase in the amount of dissipated energy at the contact point between the wheel and ground or, even more seriously, the robot could lose all mobility and become trapped. This paper proposes a traction control algorithm that can be independently implemented to each wheel without requiring extra sensors and devices compared with standard velocity control methods. The proposed traction algorithm is analogous to the stick-slip friction mechanism. The algorithm estimates the slippage of wheels by angular acceleration change, and controls the increase or decrease state of torque applied to wheels Simulations are performed to validate the algorithm. The proposed traction control algorithm yielded a 65.4% reduction of total slip distance and 70.6% reduction of power consumption compared with the standard velocity control method.