• Title/Summary/Keyword: Sliding wear test

Search Result 306, Processing Time 0.026 seconds

The Sliding Wear Behavior of Inconel 600 Mated with SUS 304 (SUS 304에 대한 Inconel 600의 Sliding 마모거동)

  • Kim, Hun;Choi, Jong-Hyun;Kim, Jun-Ki;Park, Ki-Sung;Kim, Seung-Tae;Kim, Seon-Jin
    • Korean Journal of Materials Research
    • /
    • v.11 no.10
    • /
    • pp.841-845
    • /
    • 2001
  • The steam generator tubes of power plant damaged by sliding wear due to flow-induced motion of foreign object. Amount of wear have been predicted by Achard's wear equation until now. However, there are large error and low reliability, because this equation regards wear coefficient(k) as constant. The sliding wears tests have been performed at room temperature to examine parameters of wear (wear distance, contact stress). The steam generator tube material for wear test is used Inconel 600 and foreign object material is used 304 austenite stainless steel. The sliding wear tests show that the amount of wear is not linearly proportional to the wear distance(for 374 austenite stainless steel). According to experimental result, wear coefficient is not constant k but function k(s) of wear distance. The newly modified wear predictive equation V=k(s)F have small error and high reliability.

  • PDF

Friction and Wear Behavior of Ceramics under Various Sliding Environments (세라믹 재료의 미끄럼 환경 변화에 따른 마찰 및 마멸 거동)

  • 장선태;이영제
    • Tribology and Lubricants
    • /
    • v.11 no.3
    • /
    • pp.11-23
    • /
    • 1995
  • The friction and wear behavior of $Al_{2}O_{3}$, SiC, and $Si_{3}N_{4}$ under the different sliding conditions were investigated. The cylinder-on-disc wear tester was used for a wear test method. Using the servo-motor, the sliding speed did not alternate due to the frictional forces. Three kinds of loads were selected to watch the variation of the wear rates and the frictional forces under a constant speed. Three kinds of sliding conditions were used to see the effects of the oxidation and the abrasion. The dominant wear mechanisms of $Al_{2}O_{3}$ were the abrasion and the formation of transfer layers. The abrasion has a great effect on the wear of SiC. The wear of $Si_{3}N_{4}$ was due to the asperity-failure and the oxidation. Also, the wear rate of each ceramic is shown to be related to the frictional power provided to the tribological system.

Effect of Phase Transformation and Grain-size Variation on the Dry Sliding Wear of Hot-pressed Cobalt

  • Kim, Yong-Suk;Lee, Jong-Eun;Kang, Suk-Ha;Kim, Tai-Woong
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.879-880
    • /
    • 2006
  • Effect of phase transformation and grain-size variation of hot-pressed cobalt on its dry sliding wear was investigated. The sliding wear test was carried out against glass (83% $SiO_2$) beads at 100N load using a pin-on-disk wear tester. Worn surfaces, cross sections, and wear debris were examined by an SEM. Phases of the specimen and wear debris were identified by an XRD. Thermal transformation of the cobalt from the hcp $\varepsilon$ phase to the $\gamma$ (fcc) phase during the wear was detected, which was deduced as the wear mechanism of the sintered cobalt.

  • PDF

Effect of Sliding Speed on Wear Characteristics of Polyurethane Seal (미끄럼 속도 변화에 따른 폴리우레탄 씰의 마모 특성)

  • Kim, Hansol;Jeon, Hong Gyu;Chung, Koo-Hyun
    • Tribology and Lubricants
    • /
    • v.34 no.2
    • /
    • pp.49-54
    • /
    • 2018
  • Hydraulic reciprocating seal has been widely used to prevent fluid leakage in hydraulic systems. Also, hydraulic reciprocating seal plays a significant role to provide lubricant film at contacting interface to minimize tribological problems due to sliding with counter material. To predict lifetime of hydraulic reciprocating seal, quantitative understanding of wear characteristics with respect to operating conditions such as normal force and sliding speed is needed. In this work, effect of sliding speed on wear of polyurethane (PU) hydraulic reciprocating seal were experimentally investigated using a pin-on-disk tribo-tester. The wear characteristics of PU specimens were quantitatively determined by comparing the confocal microscope data before and after test. It was found that the wear rate of PU specimens decreased from $4.9{\times}10^{-11}mm^3$ to $1.1{\times}10^{-11}mm^3/Nm$ as sliding speed increased from 120 mm/s to 940 mm/s. Also, it was observed that the friction decreased slightly as the sliding speed increased. Improvement of lubrication state with increasing sliding speed was likely to be responsible for this enhanced friction and wear characteristics. This result also suggests that decrease in sliding distance between PU elastomer and counter materials at lower sliding speed is preferred. Furthermore, the quantitative assessment of wear characteristics of PU specimen may be useful in prediction of lifetime of PU hydraulic reciprocating seal if the allowed degree of wear for failure of the seal is provided.

The Relationship between a Wear Depth :and a Decrease of the Contacting Force in the Nuclear Fuel Fretting (핵연료봉 프레팅마멸에서 마멸깊이와 접촉하중 감소사이의 관계)

  • Lee Young-Ho;Kim Hyung-Kyu
    • Tribology and Lubricants
    • /
    • v.22 no.1
    • /
    • pp.8-13
    • /
    • 2006
  • Sliding wear tests have been performed to evaluate the effect of normal load decrease on the wear depth of nuclear fuel rods in room temperature air. The objectives of this study are to quantitatively evaluate the supporting ability of spacer grid springs, to estimate the wear depth by using the contacting force decrease and to compare the wear behavior with increasing test cycles (up to $10^7$) at each spring condition. The result showed that the contacting load decrease depends on the spring shape and the applied slip amplitude. The estimated wear depth is smaller when compared with measured wear depth. Based on the test results, the wear mechanism, the role of wear debris layer and the spring shape effect were discussed.

Wear Life Prediction of CrN Coating Layer on the Press Tool for Stamping the Ultra High Strength Steel Sheet (초고강도강판 프레스성형용 금형의 CrN 코팅층 마모수명 예측)

  • Lee, J.H.;Bae, S.B.;Youn, K.T.;Heo, J.Y.;Kim, S.H.;Park, C.D.
    • Transactions of Materials Processing
    • /
    • v.26 no.3
    • /
    • pp.137-143
    • /
    • 2017
  • In this study, a wear test method was proposed to predict the wear life of the CrN layer coated on the surface of the press tools for manufacturing the auto-parts with ultra high strength steel (UHSS) with a tensile strength of 1.5 GPa. The pin-on-disc type wear test was carried out to confirm the feasibility and the reproducibility of the wear amount according to the test conditions such as the normal force, the sliding velocity, and the sliding speed. The test conditions were obtained from the finite element stamping analysis and the wear simulation. With the wear amount from the wear test, a prediction model of the wear depth in the CrN coating layer was proposed according to the test conditions with the design of experiments such as Taguchi method and the response surface method. The derived prediction model was then compared to the result of the Archard wear model, fully describing that the proposed model can effectively predict the wear life of the press tools for the auto-parts with UHSS.

The properties and wear behavior of HVOF spray coating layer of Co-alloy powder

  • Cho, Tong-Yul;Yoon, Jae-Hong;Kim, Kil-Su;Youn, Suk-Jo;Back, Nam-Ki;Chun, Hui-Gon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.6
    • /
    • pp.273-277
    • /
    • 2006
  • High velocity of oxy-fuel (HVOF) thermal spray coating is progressively replacing the other classical hard coatings such as chrome plating and ceramic coating by the classical methods, since the very toxic $Cr^{6+}$ ion is well known as carcinogen causing lung cancer, and the ceramic coatings are brittle. Co-alloy T800 powder is coated on the Inconel 718 substrates by the HVOF coating procesess developed by this laboratory. For the study of the possibility of replacing of chrome plating, the wear properties of HVOF Co-alloy T800 coatings are investigated using the reciprocating sliding tester with a counter sliding SUS 304 ball both at room and at an elevated temperature of $1000^{\circ}F\;(538^{\circ}C)$. The possibility as durability improvement coating is studied for the application to the high speed spindles vulnerable to frictional heat and wear. Wear mechanisms at the reciprocating sliding wear test are studied far the application to the systems similar to the sliding test such as high speed spindles. Wear debris and frictional coefficients of T800 coatings both at room and at an elevated temperature of $538^{\circ}C$ are drastically reduced compared to those of non-coated surface of Inconel 718 substrates. Wear traces and friction coefficients of both coated and non-coated surfaces are drastically reduced at a high temperature of $538^{\circ}C$ compared with those at room temperature. These show that the coating is highly recommendable far the durability Improvement coating on the surfaces vulnerable to frictional heat and wear.

Tribological Behavior of Silicon Carbide Ceramics - A Review

  • Sharma, Sandan Kumar;Kumar, B. Venkata Manoj;Kim, Young-Wook
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.6
    • /
    • pp.581-596
    • /
    • 2016
  • A comprehensive review on sliding and solid particle erosion wear characteristics of silicon carbide (SiC) ceramics and SiC composites is provided. Sliding or erosion wear behavior of ceramics is dependent on various material characteristics as well as test parameters. Effects of microstructural and mechanical properties of SiC ceramics are particularly focused to understand tribological performance of SiC ceramics. Results obtained between varieties of pairs of SiC ceramics indicate complexity in understanding dominant mechanisms of material removal. Wear mechanisms during sliding are mainly divided in two groups as mechanical and tribochemical. In solid particle erosion conditions, wear mechanisms of SiC ceramics are explained by elastic-plastic deformation controlled micro-fracture on the surface followed by radial-lateral crack propagation beneath the plastic zone.

Wear Reduction of Tappet Surface by Undulated Surface (미세요철표면을 이용한 태핏 표면의 마모 저감에 관한 연구)

  • 여창동;김대은
    • Tribology and Lubricants
    • /
    • v.14 no.2
    • /
    • pp.63-74
    • /
    • 1998
  • The damage of cam/tappet surface is one of the major reasons for energy loss in an I.C. engine. High friction causes the accelerated wear of the cam/tappet surfaces which in turn changes the valve opening/closing timing. During the accelerated test evidence of both rolling fatigue and sliding abrasive wear could be found. Based on the results of the accelerated test, a scheme was devised to decrease tappet wear. Wear reduction of the tappet was achieved by using undulated surface topography in the tappet center region. The wear reduction is achieved by trapping of the wear particles in the undulations as well as by increasing the supply of lubricant to the sliding interface.

Laser hardening and Wear Characteristics of Surfaces hardening steel by YAG LASER (′YAG 레이저에 의한 표면경화강의 레이저 경화와 마멸특성)

  • 옥철호;서영백;조연상;배효준;박흥식;전태옥
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.63-70
    • /
    • 1999
  • Surface hardening of plain carbon steel (SM45C) by Laser are usually much finer and stronger than those of the base metals. The present study was under taken to investigate the wear resistance and a processing parameters such as, power density, pulse width, defocusing distance, and molten depth for surface modification of plain carbon steel. The wear test was carried out under experimental condition using the wear test device, and in which the annular surfaces of wear test specimens as well as mating specimen of alumina ceramics($Al_2O_3$) was rubbed in dry sliding condition. It is shown that molten depth and width depend on defocusing distance. The wear loss on variation of sliding speed was much in lower speed range below 0.2m/sec and in higher speed range above 0.7m/sec, but wear loss was little in intermediate speed range. It depends on oxidation speed and wear speed.

  • PDF