• Title/Summary/Keyword: Sliding wear test

검색결과 306건 처리시간 0.026초

여러 미끄럼 조건에 따른 로터리 압축기 베인/롤러 표면의 마찰 마멸 특성 (Friction and Wear of the Vane/Roller Surfaces Depending on Several Sliding Condition for Rotary Compressor)

  • 이영제;오세두;김종우;김철우;최진규;조성욱
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2002년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.221-226
    • /
    • 2002
  • One of the serious challenges in developing rotary compressor with HFC refrigerant is the prediction of scuffing times and wear amounts between vane and roller surfaces. In this study, the tribological characteristics of sliding surfaces using vane-roller geometry of rotary compressor were investigated. The sliding tests were carried out under various sliding speeds, normal loads and surface roughness. During the test friction force, wear depth, time to failure and surface temperature were monitored. Because severe wear was occurred on vane surface, TiN coating was applied on sliding surfaces to prolong the wear-life of vane-roller interfaces. From the sliding test it was found that there was the optimum initial surface roughness to break in and to prolong the wear life of sliding surfaces. Depending on the load and speed, the protective layers, which were composed of metallic oxide and organic compound, were formed on sliding surfaces. Those would play an important role in role amounts of friction and wear between miler and vane surfaces.

  • PDF

미끄럼 조건에 따른 로터리 압축기 베인/롤러 표면의 마찰 마멸 특성 (Friction and Wear of the Vane/Roller Surfaces Depending on Several Sliding Condition for Rotary Compressor)

  • 오세두;조성욱;이영제
    • Tribology and Lubricants
    • /
    • 제20권6호
    • /
    • pp.337-342
    • /
    • 2004
  • One of the serious challenges in developing rotary compressor with HFC refrigerant is the prediction of scuffing times and wear amounts between vane and roller surfaces. In this study, the tribological characteristics of sliding surfaces using vane-roller geometry of rotary compressor were investigated. The sliding tests were carried out under various sliding speeds, normal loads and surface roughness. During the test, friction force, wear depth, time to failure and surface temperature were monitored. Because severe wear occurred on vane surface, TiN coating was applied on sliding surfaces to prolong the wear life of vane-roller interfaces. From the sliding test it was found that there was the optimum initial surface roughness to break in and to prolong the wear life of sliding surfaces. Depending on the load and speed, the protective layers, which were composed of metallic oxide and organic compound, were formed on sliding surfaces. Those would play an important role in the amounts of friction and wear between roller and vane surfaces.

FRP 선박 외판재의 연삭마모 특성에 관한 연구 (A study on abrasive wear characteristics of side plate of FRP ship)

  • 김병탁;고성위
    • 수산해양기술연구
    • /
    • 제44권3호
    • /
    • pp.250-256
    • /
    • 2008
  • Generally the side plate materials of FRP ship are composed of glass fiber and unsaturated polyester resin composites(GFRP composites). In this study, the effect of applied load and sliding speed on friction and wear characteristics of these materials were investigated at ambient temperature by pin-on-disc friction test. The cumulative wear volume, friction coefficient and wear rate of these materials for SiC abrasive paper were determined experimentally. The cumulative wear volume showed a tendency to increase nonlinearly with increase of sliding distance and was dependent on applied load and sliding speed for these composites. The friction coefficient of GFRP composites was increased as applied load increased at same sliding speed in wear test. It was verified by SEM photograph of worn surface that major failure mechanisms were microfracture, deformation of resin, cutting and cracking.

순도를 달리한 알루미나 세라믹스의 마멸과정 및 이의 기구에 관한 연구 (A Study on The Wear Process and Wear Mechanism of the Alumina Ceramics with Different Alumina Purity)

  • 전태옥;진동규
    • 대한기계학회논문집
    • /
    • 제18권12호
    • /
    • pp.3404-3412
    • /
    • 1994
  • The present study was undertaken to investigate the dry wear process and wear mechanism of the alumina ceramics in the purity variation which are used for the mechanical seal, roll, liner and dies. The wear test was carried out under different experimental condition using the wear testing device and in which the annular surface rubbed on dry sliding condition various sliding speed, contact pressure and sliding distance. In case of alumina purity 95%, there was speed range which wear loss increased rapidly owing to enlargement of heat impact force and temperature rise of wear surface. According as the alumina purity increased, wear loss decreased but alumina purity 85% with much void and defect had the most wear loss than any other alumina purity. The friction coefficient of sliding initial stage of wear curves has a large value but according to increase of sliding distance, it decreased owing to drop of the shear strength of wear surfaces.

압출된 OFHC Cu 봉재의 집합조직과 마멸거동 (The effect of texture of an extruded OFHC Cu rod on its sliding wear characteristics)

  • 이슬기;김용석;조재형
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.354-357
    • /
    • 2009
  • The effect of texture of an extruded OFHC Cu rod on its sliding wear has been explored. Disk specimens with three different orientations were machined from the Cu rod for the wear test; surfaces of the disk were perpendicular ($0^{\circ}$), inclined with a specific angle ($45^{\circ}$), and parallel ($90^{\circ}$) to the extrusion axis of the rod. The texture was analyzed using an X-ray goniometer by measuring {111}, {200}, and {220} pole figures of each specimen. The analyzed texture was correlated with wear-test results of the Cu specimen. Dry sliding wear tests were performed at room temperature using a pin-on-disk wear tester against an Al2O3 ball. Applied load, sliding distance, sliding speed were fixed as 20 N, 200 m, and 0.5 m/sec, respectively. The $45^{\circ}$-inclined (to the extrusion axis) disk specimen showed the lowest wear resistance with the least data scatters. It has been found that distribution of cube texture strongly influences wear rate of the extruded Cu rod.

  • PDF

지하철 레일의 미끄럼 마모거동을 고려한 재료설계에 대한 고찰 (A Study on the Rail Materials Technology for Subway Based on its Sliding Wear Behavior)

  • 이한영
    • Tribology and Lubricants
    • /
    • 제30권6호
    • /
    • pp.364-369
    • /
    • 2014
  • To assess the wear behavior of rails against subway rail car wheels, we investigate the sliding wear behavior of pins derived from two types of rails (normal rails and heat-treated rails) against a disc derived from a subway rail car wheel, using a pin-on-disc-type tribometer. We base the sliding wear test conditions on the sliding conditions for wheel flange-rail gauge corner contact. We demonstrate the remarkable transition in the wear behavior of the pins derived from the rails, from severe wear to mild wear, as a function of the sliding distance. The wear rate of the heat-treated rail material in the running-in wear region is much lower than that of the normal rail material. Furthermore, the wear rates of the pins in the running-in wear region decrease with increasing hardness and with decreasing sliding speed. However, there is little difference between the heat-treated rail pin and the normal rail pin in the wear rate in the steady-state wear region. Stricter controls on the decarburized layer beneath the surface of rails are required to reduce the wear rate in the running-in wear region.

디젤엔진용 소결(W/C35%Ni) 태핏의 마멸거동에 관한 연구 (A Study on Friction and Wear Characteristics of Sintered W/C-35%Ni Tappets for Diesel Engine Application)

  • 류병진;오세일;박맹로;양승호
    • Tribology and Lubricants
    • /
    • 제16권1호
    • /
    • pp.33-38
    • /
    • 2000
  • Abstract- In this paper tribological characteristics of solid and liquid phase sintered W/C-35%Ni tappets were investigated. Three test methods were performed to investigate the wear and surface damage mechanism of sintered tappets. First, block-on-ring wear test was performed to investigate the wear characteristics under pure sliding condition. Second, simplified cam and tappet tests (called component wear test hereafter) were carried out to simulate the real contact history of cam and tappet. Also, after the test, contact surfaces were analyzed with scanning electron microscope to study the wear mechanism. As a final screening, engine dynamo tests were performed. Results showed that in the block on ring sliding wear test, solid phase sintered specimens showed superior wear resistance to liquid phase sintered specimens. The component wear tests and engine dynamo tests also showed the same results. Therefore, in these tests, solid phase sintered tappet material revealed superior wear resistant properties to liquid phase sintered one.

PMMA(Poly Methyl Methacrylate) 코팅층 두께 및 적용하중에 따른 마멸기구 분석 (Effects of thickness and applied load on wear mechanisms of PMMA (Poly Methyl Methacrylate) coating layers)

  • 강석하;김용석
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 춘계학술대회 논문집
    • /
    • pp.152-155
    • /
    • 2004
  • Effects of sliding speed, applied load, counterpart radius and thickness of PMMA (Poly Methyl Methacrylate) coating layers on their dry sliding frictional and wear behavior were investigated. Sliding wear tests were carried out using a pin-on-disk wear tester. The PMMA layer was coated on Si wafer by a sol-gel technique with two different thicknesses, $1.5{\mu}m\;and\;0.8{\mu}m$. AISI 52100 bearing steel balls were used as a counterpart of the PMMA coating during the wear. Normal applied load and sliding speed were varied. Wear mechanisms were investigated by examining worn surfaces by an SEM. Under most of sliding test conditions, the thicker layer with the thickness of $1.5{\mu}m$ showed lower fiction coefficient than the thinner layer. Effects of sliding speed and counterpart's radius on the frictional behavior were varied depending on the thickness of the coating layer.

  • PDF

중탄소 Boron강의 가스침질탄화처리에 의해 형성된 화합물층의 마모특성에 관한 연구 (A Study on the Wear Characteristics of Compound Layers Formed during Gaseous Nitrocarburizing in Medium Carbon Boron Steels)

  • 박기원;오도원;조효석;이해우;이준범;이상윤
    • 열처리공학회지
    • /
    • 제12권2호
    • /
    • pp.136-144
    • /
    • 1999
  • The study on the wear characteristics of compound layers formed during gaseous nitrocarburising in the medium carbon boron steels and the plain carbon steel has been carried out by using a pin-on-disc type wear test machine under the oil lubricating condition at room temperature and by varying applied loads, sliding speeds and wear distances. Values of friction coefficient measured at the sliding speed of 0.4m/sec under the oil lubricating condition have been shown to decrease considerably with increasing applied load and become gradually a constant value as load is increased to a higher value, showing that the transition load for friction coefficient appears at an applied load of 247.2N. The length and volume wear rates of compound layer have been revealed to relatively constantly increase, also showing that the wear life per unit thickness of compound layer turns out to be superior as porous layer has a denser and thinner appearance. As the sliding speed increases during wear test performed by varying sliding speed at a load of 63.2N under the oil lubricating condition for medium carbon boron steel nitrocarburised in gas atmosphere, the wear rate has been found to increase, the friction coefficient to decrease and the wear life per unit thickness of compound layer to decrease considerably.

  • PDF

이종 상대재 경도에 따른 철강재료의 미끄럼 마모 특성 해석 (Analysis of Sliding Wear Behavior of Mild Steel According to Hardness of Dissimilar Mating Materials)

  • 이한영
    • Tribology and Lubricants
    • /
    • 제32권6호
    • /
    • pp.195-200
    • /
    • 2016
  • This study examines the wear behavior of mild steel pins mated against alloyed tool steel discs in a pin-on-disc type sliding test machine and provides specific clarification regarding the effects of disc hardness on the wear behavior of a mating mild steel pin. The analysis confirms these effects through the observation of differences in the wear rates of the mild steel pins at low sliding speed ranges. These differences occur even though the hardness of the mating disc does not affect the wear characteristic curve patterns for the sliding speeds, regardless of the wear regime. In the running-in wear regime, increasing the hardness of the mating disc results in a decrease in the wear rates of the mild steel pins at low sliding speed ranges. However, in the steady-state wear region, the wear rate of a pin mated against the 42DISC is greater than the wear rate of a pin mated against the 30DISC, which has a lower hardness value. This means that the tribochemical reactivity of the mating disc, which is based on hardness value, influences the wear behavior of mild steel at low sliding speed ranges. In particular, oxides with higher oxygen contents, such as $Fe_2O_3$ oxides, form predominantly on the worn surface of the 42DISC. On the contrary, the wear behavior of mild steel pins at high sliding speed ranges is nearly unaffected by the hardness of the mating disc.