• Title/Summary/Keyword: Sliding velocity

Search Result 372, Processing Time 0.024 seconds

Transverse Vibration Control of an Axially Moving String by Velocity Boundary Control (속도경계제어를 이용한 축방향 주행 현의 횡진동 제어)

  • Ryu, Du-Hyeon;Park, Yeong-Pil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.1
    • /
    • pp.135-144
    • /
    • 2001
  • In this study, the time varying boundary control using the right boundary transverse motion is suggested to stabilize the transverse vibration of an axially moving string on the basis of the energy flux between the moving string and the boundaries. The effectiveness of the active velocity boundary control is showed through the FDM simulation results. Sliding mode control is adopted in order to achieve velocity tracking control of the time varying right boundary to dissipate vibration energy of the string effectively. Optical sensor system for measuring the transverse vibration of an axially moving string is developed, and the angle of the incident wave to the right boundary, which is the input of the velocity boundary controller, is obtained. Experimental research is carried out to examine the validity and the performance of the transverse vibration control using the suggested velocity right boundary control scheme.

A longitudinal controller of an automated vehicle (자동화 차량의 전후 동역학 제어기)

  • 김주환;양현석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.349-352
    • /
    • 1997
  • In this paper, we propose a new longitudinal controller of automated vehicles. The controller is designed based on a sliding control method, which is known to be robust to disturbances and modelling errors. Contrary to currently available sliding controller, a switching controller gain method is suggested. It is shown throughout simulations that the proposed controller reduces the amount of overshoot, which may derive smoother velocity tracking in a platoon.

  • PDF

A Study on the Sliding Mode Control of Nonlinear Systems (비선형 시스템의 슬라이딩 보드 제어에 관한 연구)

  • 이태봉;박윤열;한상수
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.5
    • /
    • pp.58-64
    • /
    • 1994
  • In this paper, a robust control scheme of a nonlinear system with norm bounded uncertainty is studied. The proposed algorithm is based on variable structure systems (VSS) theory. the sliding mode which is robust to plant uncertainty and disturbances is obtained by regulating a sliding surface equation. This VSS control law can improve the robustness of control systems by adjusting the minimum reaching velocity in a reaching phase. A numerical example is given to verify the effectiveness of the control law.

  • PDF

Design of Full-Order Observer-based Sliding Mode Controller for Power System Stabilizer : Part I (전력계통안정기를 위한 전-차수 관측기에 기준한 슬라이딩 모드 제어기 설계 : Part I)

  • Lee, Sang-Seung;Park, Jong-Keun
    • Proceedings of the KIEE Conference
    • /
    • 1997.07c
    • /
    • pp.1156-1158
    • /
    • 1997
  • This paper presents the proposed full-order observer-based sliding mode power system stabilizer(FOOSMPSS) for finding unmeasurable state variables(torque angle, quadratic-axis transient voltage, exciter output voltage, voltage regulator output voltage and output voltage) by measuring angular velocity. The simulation results is shown by the comparison of the FOOPSS with the proposed FOOSMPSS.

  • PDF

Robust Control of Biped Robot Using Sliding Mode Controller (슬라이딩 모드 제어기를 이용한 이족로봇의 강건제어)

  • Park, In-Gyu;Kim, Jin-Geol
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.576-583
    • /
    • 2000
  • A robust position control using a sliding mode controller is adopted for the stable dynamic walking of the biped. For the biped robot that is modeled with 14 degrees of freedom rigid bodies using the method of the multibody dynamics, the joint angles for simulation are obtained by the velocity transformation matrix using the given Cartesian foot and trunk trajectories. Hertz force model and Hysteresis damping element which is used in explanation of the energy dissipation during contact with ground are used for modeling of the ground reactions during the simulation. By the obtained that forces which contains highly confused noise elements and the system modeling uncertainties of various kinds such as unmodeled dynamics and parameter inaccuracies, the biped system will be unstable. For that problems, we are adopting a nonlinear robust control using a sliding mode controller. Under the assumption that the esimation error on the unknown parameters is bounded by a given function, that controller provides a successful way to preserve stability and achieve good performance, despite the presence of strong modeling imprecisions or uncertainties.

  • PDF

Sliding Mode Controller Design for Biped Robot (이족보행로봇을 위한 슬라이딩 제어기 설계)

  • Park, In-Gyu;Kim, Jin-Geol;Kim, Ki-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.5
    • /
    • pp.137-146
    • /
    • 2001
  • A robust controller with the sliding mode is proposed for stable dynamic walking of the biped robot in this paper. For the robot system to be controlled, which is modeled as 14 DOF rigid bodies by the method of multi-body dynamics, the joint angle trajectories are determined by the velocity transformation matrix. Also Hertz force model and Hysteresis damping element are utilized for the ground reaction and impact forces during the contact with the ground. The biped robot system becomes unstable since those forces contain highly confused noise components and some discontinuity, and modeling uncertainties such as parameter inaccuracies. The sliding mode control is applied to solve above problems. Under the assumption of the bounded estimation errors on the unknown parameters, the proposed controller provides a successful way to achieve the stability and good performance in spite of the presence of modeling imprecisions of uncertainties.

  • PDF

The Effect of Finished Surface Orientation on Friction Characteristics in Boudary Lubrication (경계윤활에서의 가공방향에 대한 마찰특성의 연구)

  • 유응대;김태완;구영필;조용주
    • Tribology and Lubricants
    • /
    • v.18 no.3
    • /
    • pp.211-218
    • /
    • 2002
  • The effect of characteristic of surface roughness and roughness patterns on friction was studied experimentally in boundary lubrication with reciprocating tribometer. Roughness was changed from Ra=0.2($\mu\textrm{m}$)to Ra=1.2($\mu\textrm{m}$). Three roughness pattern-transverse, oblique, longitudinal- were tested for various load and velocity. The experimental results show that the scuffing resistance of surfaces with transversal roughness pattern is higher than that of surface with longitudinal and obliq pattern. under the conditions of the roughness values of Ra=0.2, 0.5,1.0 and 1.2. surfacer roughness (Ra) was decreased with the normal load increased before scuffing occurred. oblique pattern and longitudinal pattern with Ra=0.2 and Ra=1.0 was higher scuffing load under low sliding velocity, but with Ra=0.5 was higher scuffing load under high sliding velocity.

Friction Characteristics of DLC and WC/C (DLC와 WC/C의 마찰특성)

  • Kim, Dong-Wook;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.27 no.6
    • /
    • pp.308-313
    • /
    • 2011
  • In this study, friction tests were performed in order to investigate the effect of sliding velocity and normal load on the friction characteristics of DLC (a-C:H) and WC/C (a-C:H:W) using a ball-on-disk type friction tester. DLC and WC/C were deposited on AISI 52100 steel balls. Friction tests against carburized SCM 415 Cr-Mo steel disks were carried out under various sliding velocity (0.1, 0.78, 1.56, 3.13, 6.25, 12.5, 25, 50 and 100 mm/s) and normal load (2.4, 4.8 and 9.6 N) conditions while the relative humidity was 20~40 % R.H. and air temperature was $16{\sim}24^{\circ}C$. As results, kinetic friction coefficients of DLC and WC/C were obtained under each test condition. The results show that the kinetic friction coefficients of DLC and WC/C generally increase with the increase in sliding velocity. And, under the same sliding velocity condition, the kinetic friction coefficients are almost constant regardless of normal load. In addition, the kinetic friction coefficients of DLC are lower than those of WC/C under the same test conditions.

Friction and Wear Characteristics of Carbon Fiber Reinforced Composites against Lay-up Orientation (CFRP 복합재의 적층방향에 대한 마찰 및 마모 특성)

  • Koh, S.W.;Choi, Y.K.
    • Journal of Power System Engineering
    • /
    • v.9 no.2
    • /
    • pp.57-64
    • /
    • 2005
  • This paper is the study on dry sliding wear behavior of carbon fiber reinforced epoxy matrix composites against lay-up orientation. Tests were investigated on the effect of the lay-up orientation, fiber sliding direction, load and sliding velocity when circumstance keep continuously at $21^{\circ}C$, 60%RH. Pin-on-disk dry sliding wear tests for each experimental condition were carried out with a carbon fiber reinforced plastic pin on stainless steel disk in order to search the friction and wear characteristics. The wear rates and friction coefficients against the stainless steel counterpart were experimentally determined and the wear mechanisms were microscopically observed. The effect on friction and wear behavior are observed differently, according to various conditions. When sliding took place against counterpart, the highest wear resistance and the lowest friction coefficient were observed in the $[0]_{24s}$ lay-up orientation at anti-parallel direction.

  • PDF

FRICTION CHARACTERISTICS OF A PAPER-BASED FRICTION MATERIAL

  • Gao, H.;Barber, G.-C.;Chu, H.
    • International Journal of Automotive Technology
    • /
    • v.3 no.4
    • /
    • pp.171-176
    • /
    • 2002
  • A bench test set-up is employed to simulate the friction characteristics of a paper-based friction material operating against a steel plate. Dry friction tests are run as well as tests with transmission fluids. Glazed friction material produces a negative coefficient of friction versus sliding velocity (f-v) curve for both dry friction and lubrication with transmission fluids. At low sliding speeds, the coefficient of friction when operating in transmission fluids for glazed friction materials is greater than that under dry friction. An appreciable negative f-v slope occurs at low sliding speeds for glazed friction materials when running with the transmission fluid. The friction material after running in produces a constant f-v curve under dry friction and a negative slope when lubricated with transmission fluid. At low sliding speeds, the coefficient of friction of the run-in friction material is lower than that of the glazed wet material. On the other hand, the run-in friction material has a larger friction coefficient than does the glazed friction material at higher sliding speeds.