• 제목/요약/키워드: Sliding system

검색결과 1,753건 처리시간 0.032초

Nominal States Relationship and Its Sliding Mode Control Application

  • Kim, Min-Chan;Ko, Chang-Min;Park, Seung-Kyu;Kwak, Gun-Pyong;Yoon, Tae-Sung;Ahn, Ho-Kyun
    • Journal of information and communication convergence engineering
    • /
    • 제7권3호
    • /
    • pp.356-360
    • /
    • 2009
  • A novel method to derive a Nominal States Relationship (NSR) of a control system is proposed. The obtained relationship is used to design a sliding surface which can have the characteristic of a nominal system. With this sliding surface, a Sliding Mode Control (SMC) system which has the characteristics of the nominal system controlled by pole placement is designed for an uncertain system.

부정합 시스템 행렬 불확실성을 갖는 시스템을 위한 정적 출력 궤환 적분 가변 구조 제어기 (A Static Output Feedback Integral Variable Structure Controller for Uncertain Systems with Unmatched System Matrix Uncertainty)

  • 이정훈
    • 전기학회논문지
    • /
    • 제59권2호
    • /
    • pp.411-416
    • /
    • 2010
  • In this paper, an integral variable structure static output feedback controller with an integral-augmented sliding surface is designed for the improved robust control of a uncertain system under unmatched system uncertainty and matched input matrix uncertainty and disturbance satisfying some conditions. To effectively remove the reaching phase problems, an output dependent integral augmented sliding surface is proposed. Its equivalent control and ideal sliding mode dynamics are obtained. The previous some limitations is overcome in this systematic design. A stabilizing control with the closed loop exponential stability is designed for all unmatched system matrix uncertainties and proved together with the existence condition of the sliding mode on S=0. To show the usefulness of the algorithm, a design example and computer simulations are presented.

부정합 시스템 행렬 불확실성을 갖는 시스템을 위한 동적 출력 궤환 가변 구조 제어기 (A Dynamic Output Feedback Variable Structure Controller for Uncertain Systems with Unmatched System Matrix Uncertainty)

  • 이정훈
    • 전기학회논문지
    • /
    • 제59권11호
    • /
    • pp.2066-2072
    • /
    • 2010
  • In this paper, a variable structure dynamic output feedback controller with an transformed sliding surface is designed for the improved robust control of a uncertain system under unmatched system uncertainty, matched input matrix uncertainty, and disturbance satisfying some conditions. This paper is extended from the results of the static output feedback VSS in [9]. To effectively remove the reaching phase problems, an initial condition of the dynamic output is determined. The previous some limitations on the dynamic output feedback variable structure controller is overcome in this systematic design. A stabilizing control is designed to generate the sliding mode on the predetermined sliding surface S=0 and as a results the closed loop exponential stability is obtained and proved together with the existence condition of the sliding mode on S=0 for all unmatched system matrix uncertainties. To show the usefulness of the algorithm, a design example and computer simulations are presented.

A New Approach to the Design of a Fuzzy Sliding Mode Controller for Uncertain Nonlinear Systems

  • Seo, Sam-Jun;Kim, Dong-Sik;Kim, Dong-Won;Yoo, Ji-Yoon;Park, Gwi-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.646-651
    • /
    • 2004
  • This paper deals with a new adaptive fuzzy sliding mode controller and its application to an inverted pendulum. We propose new method of adaptive fuzzy sliding mode control scheme that the fuzzy logic system is used to approximate the unknown system functions in designing the SMC of uncertain nonlinear systems. The controller's construction and its analysis involve sliding modes. The proposed controller consists of two components. Sliding mode component is employed to eliminate the effects of disturbances, while a fuzzy model component equipped with an adaptation mechanism reduces modeling uncertainties by approximating model uncertainties. To demonstrate its performance, the proposed control algorithm is applied to an inverted pendulum. The results show that both alleviation of chattering and performance are achieved

  • PDF

Adaptive Fuzzy Sliding Mode Control for Uncertain Nonlinear Systems

  • Seo, Sam-Jun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제11권1호
    • /
    • pp.12-18
    • /
    • 2011
  • This paper deals with a new adaptive fuzzy sliding mode controller and its application to an inverted pendulum. We propose a new method of adaptive fuzzy sliding mode control scheme that the fuzzy logic system is used to approximate the unknown system functions in designing the SMC of uncertain nonlinear systems. The controller's construction and its analysis involve sliding modes. The proposed controller consists of two components. Sliding mode component is employed to eliminate the effects of disturbances, while a fuzzy model component equipped with an adaptation mechanism reduces modeling uncertainties by approximating model uncertainties. To demonstrate its performance, the proposed control algorithm is applied to an inverted pendulum. The results show that both alleviation of chattering and performance are achieved.

가상의 상태를 이용한 새로운 슬라이딩 모드 제어기 (Novel sliding mode controller with virtual state)

  • 박승규;안호균
    • 제어로봇시스템학회논문지
    • /
    • 제5권5호
    • /
    • pp.505-510
    • /
    • 1999
  • In this paper, a novel sliding surface is proposed by defining a novel virtual state. This sliding surface has nominal dynamics of an original system and makes it possible that the sliding mode control(SMC) technique is used with the various types of controllers. Its design is based on the augmented system whose dynamics have a higher order than that of the original system. The reaching phase is removed by using an initial virtual state which makes the initial sliding function equal to zero.

  • PDF

A Sliding Surface Design for Linear Systems with Mismatched Uncertainties based on Linear Matrix Inequality

  • Jang, Seung-Ho;Kim, Sang-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.561-565
    • /
    • 2005
  • Sliding mode control (SMC) is an effective method of controlling systems with uncertainties which satisfy the so-called matching condition. However, how to effectively handle mismatched uncertainties of systems is still an ongoing research issue in SMC. Several methods have been proposed to design a stable sliding surface even if mismatched uncertainties exist in a system. Especially, it is presented that robustness and efficiency of SMC for linear systems with mismatched uncertainties can be improved by reducing mismatched uncertainties in the reduced-order system. The reduction method needs a new sliding surface with an additional component based on Lyapunov redesign technique. In this paper, a stable sliding surface which contains additional component to reduce the influence of mismatched uncertainties, is introduced. It is designed by using linear matrix inequalities that guarantees the stability of the system. A numerical example demonstrates the validity of the proposed scheme.

  • PDF

이산 시간 스위칭 다이나믹을 이용한 새로운 슬라이딩 모드 제어 시스템의 설계 및 안정도 해석 (Design of new sliding mode control system using discrete-time switching dynamics and its stability analysis)

  • 김동식;서호준;서삼준;박귀태
    • 대한전기학회논문지
    • /
    • 제45권3호
    • /
    • pp.407-414
    • /
    • 1996
  • In this paper we consider the variable structure control for a class of discrete-time uncertain multivariable systems where the nominal system is linear. Discrete-time switching dynamics are introduced so that a new type of state trajectories called sliding mode may exist on the sliding surface by state feedback. The quantitative analysis for the matched uncertainties will show that every response of the system with the proposed switching dynamics is bounded within small neighborhoods of the state-space origin. Also, by the similarity transformation it will be shown that the eigenvalues of the closed-loop systems are composed of those of the subsystems which govern the range-space dynamics and null-space dynamics. It will be also shown that ideal sliding mode can be obtained in the absence of uncertainties due to one-step attraction to the sliding surface regardless of initial position of states. (author). 12 refs., 2 figs.

  • PDF

새로운 모델 추종 슬라이딩 모드 제어기 (Novel Model Following Sliding Mode Controller with Virtual State)

  • 박승규;옥인조;안호균
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.2669-2671
    • /
    • 2000
  • In this paper, a new model error following sliding mode control is considered with a novel sliding surface for the error. This novel sliding surface has nominal dynamics of an original state of the error system and makes it possible that the Sliding Mode Control(SMC) technique for the error of the model following is used with the various types of controllers. Its design is based on the augmented system whose dynamics have a higher order than that of the original error system. The reaching phase is removed by using an initial virtual state which makes the initial error state sliding function equal to zero.

  • PDF

2차 슬라이딩 모드를 이용한 불확실성을 갖는 비선형 시스템의 간접적응 자기조정 퍼지제어 (Indirect Adaptive Self-Regulating Fuzzy Control of Uncertain Nonlinear Systems Using Second Order Sliding Mode)

  • 박원성;양해원;정기철;김도우
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1716-1717
    • /
    • 2007
  • In this paper, a second order fuzzy sliding mode control that combines with a adaptive self-regulating technique is proposed for a nonlinear system with unknown dynamics. The chattering effect that is a representative disadvantage of the sliding mode control is avoided by using the second order sliding mode control instead of the first order sliding mode control. The proposed sub-controller is composed of the equivalent control that is approximated by an online rule regulation sheme and the hitting control that is used to constrain the states of the sub-system to maintain on the sub-sliding surface and used to guarantee the system robustness. Simulation results are presented to show the effectiveness of the proposed controller

  • PDF