• Title/Summary/Keyword: Sliding ratio

Search Result 218, Processing Time 0.028 seconds

Prediction of the Shear Strength of FRP Strengthened RC Beams (I) - Development and Evaluation of Shear strength model - (FRP로 전단 보강된 철근콘크리트 보의 전단강도 예측 (I) - 전단강도 예측 모델제안 및 검증 -)

  • Sim Jong-Sung;Oh Hong-Seob;Moon Do-Young;Park Kyung-Dong
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.3 s.87
    • /
    • pp.343-351
    • /
    • 2005
  • This study developed a shear strength prediction model of FRP strengthened reinforced concrete beams in shear. The primary design parameters were shear crack angle and shear span to depth ratio of FRP reinforcement. Of primary concern In the suggested model was the FRP debonding failure, which Is a typical fracture mode of RC beams strengthened with FRP, The proposed model used a crack sliding model based on modified plasticity theory. To address the effect of the shear span to depth ratio, the arch action was considered in the proposed model. The proposed model was applied to RC beams strengthened with FRP. The results showed that the proposed model agree with test results.

Microstructure and Wear Behavior of $SiC_p-reinforced$ Aluminum Matrix Composites Fabricated by Spray Casting Process (분사주조한 $SiC_p$ 입자강화 알루미늄 복합재료의 미세조직과 마멸특성)

  • Park, Chong-Sung;Kim, Myung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.15 no.6
    • /
    • pp.574-587
    • /
    • 1995
  • The $SiC_p-reinforced$ preforms fabricated by spray casting process were hot-extruded and subsequently T6-treated, and the morphology of the silicon phase and the grain size for these preforms and extruded samples were examined by Image Analyzer. Experimental observation revealed that with increase in volume percent of SiC particles, the grain size and silicon phase of the $Al-Si/SiC_p$ composites become finer, the shape of Si phase is changed from blocky to granular type, and aspect ratio of Si phase tend to become unity. Wear-tests with various sliding velocities, show that the wear resistance of spray cast specimen is increased remarkably compare to the permanent mold cast specimen at the sliding velocity range of $1.98{\sim}2.38m/sec$.. Microstructural observations for the worn surfaces of specimens revealed that wear resistance of Al-Si alloys at certain sliding velocities could be improved not only by the fine grain size of aluminum matrix but also the fine size and granular shape of silicon phases. The wear resistance of $SiC_p$ reinforced aluminum composites was found to be sensitive to the volume percentage of the reinforcing particles. The worn surfaces with various sliding velocities, show that change in wear mechanism seems to occur at the sliding velocity of near 2m/sec for all samples, and such a change in mechanism is delayed with increase in $SiC_p$ volume fraction.

  • PDF

An Elastic Joint Manipulator for a Human friendly robot

  • Takahashi, Takayuki;Murayama, Yasushi;Wang, Zhi-Dong;Nakano, Eiji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.44.3-44
    • /
    • 2001
  • This articles describes a novel design elastic joint manipulator for a mobile robot, which works in an office environment with humans. The primary goal of this manipulator design is safeness on collision and contact. To achieve this, each joint is made of an elastic element and this is driver with a high ratio gear tram. The performance was verified, however, it has a serious drawback. It produce vibration, due to the elastic joints and high ratio gear train. We found that a sliding mode controller has an excellent performance for reducing such vibration. Results of computer simulation and experiments are shown.

  • PDF

A Kinematic Analysis on Propulsion of COG by Types of Fin-kick in SCUBA Diving (잠수 휜 킥 유형별 신체중심 추진 동작의 운동학적 분석)

  • Ryew, Che-Cheong;Oh, Hyun-Soo;Kim, Jin-Hyun
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.2
    • /
    • pp.11-21
    • /
    • 2007
  • The study was undertaken to present the quantitative materials available in underwater industries, underwater rehabilitation & physical training through comparison & analysis of effects contributing to propulsion of COG by types of fin-kick in underwater activities. For this 3D cinematography was performed for the skilled subjective and conclusions obtained on the basis of analysis of kinematic variables were as follows. In temporal variable the delay in the order of flutter>side>dolphin kick in elapsed time by total & phase resulted in longer sliding phase by larger fin kick of extension & flexion of both leg and thus more contributed in propulsion of COG. than those of the otherwise. In linear variable the contribution ratio to the result of propulsion of COG in both propulsive(mean $35.39{\pm}7.93cm$ in Y axis) and sliding phases(mean $66.36{\pm}11.01cm$ in Y axis)was shown to be order of flutter>dolphin>side fin kick. the maximum velocity of COG in Y direction was showed in both propulsive and sliding phases, and the contribution ratio to the propulsion of COG was in the order of flutter$\geq$dolphin>side fin kick. In angular variable the Significant difference in angle of leg joint by types of fin kick in both leg was showed but no routine order. The Significant difference in angular velocity of leg joint by types of fin kick in both leg was showed in the order of flutter>dolphin$\geq$side fin kick in propulsive but no in sliding phase. The Fluid resistance by tilting angle of trunk in both propulsive and sliding phase was decreased in the order of flutter>dolphin$\geq$side fin kick and tilting angle of trunk of the skilled was smaller than that of the unskilled in difference of maximum mean 7.97degree and minium mean 2.06degree. In summary of the above, It will desirable fin kick type because of more contribution to COG propulsion by the velocity & displacement in Y-axis and less fluid resistance by tilting angle of trunk and larger angular velocity in the case of more delayed in elapsed time of propulsive phase than that of the otherwise.

Lubrication Analysis of Infinite Width Slider Bearing with a Micro-Groove: Part 1 - Effect of Groove Position (미세 그루브가 있는 무한폭 Slider 베어링의 윤활해석: 제1보 - 그루브 위치의 영향)

  • Park, TaeJo;Jang, InGyu
    • Tribology and Lubricants
    • /
    • v.35 no.6
    • /
    • pp.376-381
    • /
    • 2019
  • Surface texturing is widely applied to reduce friction and improve the reliability of machine elements. Despite extensive theoretical studies to date, most research has been limited to parallel thrust bearings, mechanical face seals, piston rings, etc. However, most sliding bearings have a convergent film shape in the sliding direction and the hydrodynamic pressure is mainly generated by the wedge action. The results of surface texturing on inclined slider bearings are largely insufficient. This paper is the first part of a recent study focusing on the effect of the groove position on the lubrication performances of inclined slider bearings. We model a slider bearing with one rectangular groove on a fixed pad and analyze the continuity and Navier-Stokes equations using a commercial computational fluid dynamics (CFD) code, FLUENT. The results show that the film convergence ratio and the groove position have a significant influence on the pressure and velocity distributions. There are groove positions to maximize the supporting load with the film convergence ratio and the groove reduces the frictional force acting on the slider. Therefore, the proper groove position not only improves the load-carrying capacity of the slider bearings but also reduces its frictional loss. The present results apply to various surface-textured sliding bearings and can lead to further studies.

Evaluation of Combustion Stability of Idling Speed State (LBT연소를 통한 Idling 운전시의 연소안정성 평가)

  • 이중순;이종승;김진영;정성식;하종률
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.5
    • /
    • pp.66-72
    • /
    • 1999
  • It is necessary to discuss lightening engine parts and reducing the friction of sliding parts to improve fuel consumption and combustion stability at idling condition. Lean best torque combustion which produce maximum power at a lean air-fuel ratio is effective for the reduction of exhaust gas emission and the improvement of fuel consumption. Accordingly, this study deals with the expansion of lean combustible limitation, the combustion stability and the reduction of idle speed through the analysis of combustion characteristics on the base of the control technique of precise air-fuel ratio because it does not need to maximum power at idling condition. The idle speed is increased proportional to ISC(Idle Speed Control) duty ratio. On the other hand the idle speed decreased by lean air-fuel ratio. The COV in engine speed is stable within maximum two percent up to 17.6 mixture ratio by the control of ISC duty ratio.

  • PDF

A Modified Method Based on the Discrete Sliding Norm Transform to Reduce the PAPR in OFDM Systems

  • Salmanzadeh, R.;Mozaffari Tazehkand, B.
    • ETRI Journal
    • /
    • v.36 no.1
    • /
    • pp.42-50
    • /
    • 2014
  • Orthogonal frequency division multiplexing (OFDM) is a modulation technique that allows the transmission of high data rates over wideband radio channels subject to frequency selective fading by dividing the data into several narrowband and flat fading channels. OFDM has high spectral efficiency and channel robustness. However, a major drawback of OFDM is that the peak-to-average power ratio (PAPR) of the transmitted signals is high, which causes nonlinear distortion in the received data and reduces the efficiency of the high power amplifier in the transmitter. The most straightforward method to solve this problem is to use a nonlinear mapping algorithm to transform the signal into a new signal that has a smaller PAPR. One of the latest nonlinear methods proposed to reduce the PAPR is the $L_2$-by-3 algorithm, which is based on the discrete sliding norm transform. In this paper, a new algorithm based on the $L_2$-by-3 method is proposed. The proposed method is very simple and has a low complexity analysis. Simulation results show that the proposed method performs better, has better power spectral density, and is less sensitive to the modulation type and number of subcarriers than $L_2$-by-3.

The effect of non-persistent joints on sliding direction of rock slopes

  • Sarfarazi, Vahab;Haeri, Hadi;Khaloo, Alireza
    • Computers and Concrete
    • /
    • v.17 no.6
    • /
    • pp.723-737
    • /
    • 2016
  • In this paper an approach was described for determination of direction of sliding block in rock slopes containing planar non-persistent open joints. For this study, several gypsum blocks containing planar non-persistent open joints with dimensions of $15{\times}15{\times}15cm$ were build. The rock bridges occupy 45, 90 and $135cm^2$ of total shear surface ($225cm^2$), and their configuration in shear plane were different. From each model, two similar blocks were prepared and were subjected to shearing under normal stresses of 3.33 and $7.77kg/cm^{-2}$. Based on the change in the configuration of rock-bridges, a factor called the Effective Joint Coefficient (EJC) was formulated, that is the ratio of the effective joint surface that is in front of the rock-bridge and the total shear surface. In general, the failure pattern is influenced by the EJC while shear strength is closely related to the failure pattern. It is observed that the propagation of wing tensile cracks or shear cracks depends on the EJC and the coalescence of wing cracks or shear cracks dominates the eventual failure pattern and determines the peak shear load of the rock specimens. So the EJC is a key factor to determine the sliding direction in rock slopes containing planar non-persistent open joints.

Rotating-Gantry-Based X-Ray Micro-Tomography System with the Sliding Mechanism Capable of Zoom-In Imaging

  • Cho, Min-Hyoung;Lee, Dong-Hun;Han, Byung-Hee;Lee, Soo-Yeol
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.2
    • /
    • pp.107-113
    • /
    • 2008
  • We introduce a rotating-gantry-based x-ray micro-tomography system to be used for small animal imaging studies. It has the zoom-in imaging capability for high resolution imaging of a local region inside the animal subject without any contrast anomalies arising from truncation of the projection data. With the sliding mechanism mounted on the rotating gantry holding the x-ray source and the x-ray detector, we can control the magnification ratio of the x-ray projection data. By combining the projection data from the large field of view (FOV) scan of the whole animal subject and the projection data from the small FOV scan of the region of interest, we can obtain artifact-free zoomed-in images of the region of interest. For the acquisition of x-ray projection data, we use a $1248{\times}1248$ flat-panel x-ray detector with the pixel pitch of 100 mm. It has been experimentally found that the developed system has the spatial resolution of up to 121p/mm when the highest magnification ratio of 5:1 is applied to the zoom-in imaging. We present some in vivo rat femur images to demonstrate utility of the developed system for small animal imaging.

A Comparative Study on the Evaluation of the Wear Resistance in Zr-xNb-xSn Alloys

  • Lee, Young-Ho;Kim, Hyung-Kyu;Jung, Youn-Ho
    • KSTLE International Journal
    • /
    • v.4 no.2
    • /
    • pp.47-51
    • /
    • 2003
  • Sliding wear tests have been carried out in room temperature air and water in order to compare the wear resistance of Zr-xNb-xSn alloys of various alloying elements (Nb and Sn). The main focus was to quantitatively compare the wear properties of the recently developed Zr-xNb-xSn alloys with the commercial ones using the evaluation parameters of the wear resistance with the consideration of the worn area. As a result, the recently developed alloys had a similar wear resistance compared with the commercial ones. The dominant factor governing the wear resistance was the protruded volume of the wear debris that was formed on the worn area in the air condition, but the accommodation of the plastic deformation on the contact area in water. In addition, the worn area size appeared to be very different depending on the tested alloys. To evaluate the wear resistance of each test specimen, the ratio of the wear volume or the protruded volume to the worn area ($D_e$ or $D_p$) is investigated and proposed as the evaluation parameters of the wear resistance.