• Title/Summary/Keyword: Sliding ratio

Search Result 217, Processing Time 0.025 seconds

Robust Control of an Anti-Lock Eddy Current Type Brake System (잠김 방지 기능을 가지는 비접촉식 와전류형 제동장치의 견실제어)

  • 이갑진;박기환
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.4
    • /
    • pp.525-533
    • /
    • 1998
  • A conventional contact type brake system which uses a hydraulic system has mny Problems such as time delay response due to pressure build-up, brake pad wear due to contact movement, bulky size, and low braking performance in high speed region. As vehicle speed increases, a more powerful brake system is required to ensure vehicle safety and reliability. In this work, a contactless brake system of an eddy current type is proposed to overcome problems. Optimal torque control which minimizes a braking distance is investigated with a scaled-down model of an eddy current type brake. It is possible to realize optimal torque control when a maximum friction coefficient (or desired slip ratio) corresponding to road condition is maintained. Braking force analysis for a scaled-down model is done theoretically and experimentally compensated. To accomplish optimal torque control of an eddy current type brake system, a sliding mode control technique which is, one of the robust nonlinear control technique is developed. Robustness of the sliding mode controller is verified by investigating the braking performance when friction coefficient is varied. Simulation and experimental results will be presented to show that it has superior performance compared to the conventional method.

  • PDF

The Effect of Load Direction and Pile Size on the Pile Bearing Capacity : Model Pile Tests (하중 방향(압축-인발)과 말뚝 직경이 말뚝의 지지력에 미치는 영향에 관한 연구 -실내모형시험-)

  • 이인모;백세환
    • Geotechnical Engineering
    • /
    • v.8 no.3
    • /
    • pp.13-22
    • /
    • 1992
  • Model pile tests using calibration chamber are performed in !his paper in order to clarify the effect of the fundamental differences between the newly developed SPLT(Simple Pile Loading Test)and the conventional pile loading test on the pile bearing capacity. They are : (1) the direction of the applied load to mobilize the skin friction ; and (2) the use of reduced sifted sliding core. The conclusions obtained from the model pile tests are as follows : (1) The skin friction in tension loading is found to be somewhat smaller than that in compression loading. The average ration is 0.73 with the coefficient of variation (COV) of 0.18. (2) The ratio of the tip resistance rosin연 the reduced sized sliding core to that using the whole shoe shows wide scattering ; its average is 0.99 and the COV is 0.28. The aver - age of 0.99 means that there is no considerable difference in the tip resistance whether the reduced sized sliding core or the whole shoe is used, on condition that penetration depth ratio is larger than 4 : if the boundary effect of the chamber test is considered, the resistance of the whole shoe might be even larger.

  • PDF

Multipath Search Algorithm based on Sliding Window (슬라이딩 윈도우를 이용한 다중 경로 탐색 알고리즘)

  • 유현규;권종현;전형구;홍대식;강창언
    • Proceedings of the IEEK Conference
    • /
    • 2000.11a
    • /
    • pp.69-72
    • /
    • 2000
  • In CDMA systems, the performance of the typical multipath searcher degrades much according as the signal to noise ratio becomes low. In this paper, multipath searcher algorithm is proposed based on sliding window to overcome this drawback. In searcher systems, correlation values between incoming and local PN sequences are used to acquire multipath components. Therefore more accurate distributions of correlation values obtained through this proposed algorithm enables to get higher detection probability. In computer simulations, it is verified that proposed algorithm has better performances in Rayleigh fading channel and Gaussian channel.

  • PDF

Reinforcement Effect of Marine Structure Foundation by Column Jet Method (CJM 그라우팅에 의한 호안구조물의 기초보강효과)

  • 천병식;양형칠
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.128-131
    • /
    • 2001
  • The purpose of this study is to investigate the application of Column Jet Method(CJM) as countermeasure against settlement and slope sliding of existing marine structure due to embankment load behind reclaimed revetment. CJM is to make high-strengthened body by compacting and grouting cement mortar after forming artificial space in the ground with ground relaxition machine or high pressure water jetting. Before the ground was reinforced by CJM, the result of slope stability analysis was not satisfy the allowable safe ratio, but after the ground was reinforced by CJM, the stability of slope was over the allowable safe ratio and stable, Therefor, the application of CJM to restraint settlement and sliding of marine structure was very satisfactory.

  • PDF

Design Of Adaptive Sliding Mode Control For Aircraft Anti-Braking System (항공기 Anti-Braking System을 위한 적응 슬라이딩 모드 제어기 설계)

  • Choi, Hyung-Sup;Lee, Won-Ju;Park, Mig-Non;Kim, Eun-Tai
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.1083-1084
    • /
    • 2008
  • This paper proposes the design of anti-braking system on aircraft and wheel slip ratio control using adaptive slide mode control. By maintaining the desired wheel slip ratio under runway conditions, we can obtain the maximal frictional force and reduce the braking range. In this paper, we apply an adaptive sliding mode control to aircraft brake system and it can guarantee the robustness under variations in brake characteristics. The performance of proposed controller is verified in simulations.

  • PDF

The Comparison of Two Control Algorithm for a Voltage Bus Conditioner in a DC Power Distribution System (DC 전력시스템에서의 Voltage Bus Conditioner의 제어기법 비교)

  • La, Jae-Du;Lee, Yong-Geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.55 no.1
    • /
    • pp.47-53
    • /
    • 2006
  • A Voltage Bus Conditioner (VBC) is used to mitigate the voltage transients on a common power distribution bus. The VBC described here utilises inductive storage and unlike its counter part with capacitive storage, it can employ the entire stored energy towards transients' mitigation. The performances of adaptive duty ratio control and sliding mode control have been compared. The simulation results (with the package SABER) indicate that the sliding mode control results in the shortest and the smallest bus voltage excursions.

마멸입자가 운동이력이 다른 금속재료의 마찰 마멸현상에 미치는 영향

  • 황동환;김대은;이상조
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.807-810
    • /
    • 1995
  • The effects of weae particles on the friiction and wear behavior of metals in dry sliding conditions are presented. The tribological test were performed using pure metal specimens which were selected based on their degrees of compatibility and hardness ratio. Friction and wear experiments were conducted using both pin-on-disk and reciprocating pin-on-plate type tribotesters to investigate the effect of motion history. Experimental results show that in the case of dry sliding the frictional behavior observed during pin-on-disk test differed form that of pin-on-reciprocator test for the given set of material pairs. The friction coefficient and wear rate were found to be higher for the pin-on-disk tests. It is suspected that the sliding motion of the pin affects the wear particle dynamics, which in turn influences the frictional behavior. The effect of material pair properties seemed to be relatively smaller than that of wear particles. The results of this paper is expected to aid in the design of mechanical systems for best tribological performance.

  • PDF

New insights about ice friction obtained from crushing-friction tests on smooth and high-roughness surfaces

  • Gagnon, Robert E.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.3
    • /
    • pp.361-366
    • /
    • 2018
  • Ice crushing occurs in many situations that involve a sliding frictional component such as sports involving ice-contact, ice interaction with ship hulls, and ice-on-ice sliding/crushing within glaciers and between interacting sea ice floes. Ice crushing-friction tests were conducted in the lab at $-10^{\circ}C$ using a set of acrylic ice-crushing platens that included a flat smooth surface and a variety of high-roughness surfaces with regular arrays of small prominences. The experiments were part of Phase II tests of the Blade Runners technology for reducing ice-induced vibration. Ice was crushed against the platens where the ice movement had both a vertical and a horizontal component. High-speed imaging through the platens was used to observe the ice contact zone as it evolved during the tests. Vertical crushing rates were in the range 10-30 mm/s and the horizontal sliding rates were in the range 4.14-30 mm/s. Three types of freshwater ice were used. Friction coefficients were extraordinarily low and were proportional to the ratio of the tangential sliding rate and the normal crushing rate. For the rough surfaces all of the friction coefficient variation was determined by the fluid dynamics of a slurry that flowed through channels that developed between leeward-facing facets of the prominences and the moving ice. The slurry originated from a highly-lubricating self-generating squeeze film of ice particles and melt located between the encroaching intact ice and the surfaces.

Cutting force regulation of microdrilling using the sliding mode control (슬라이딩 모드 제어를 이용한 마으크로 드릴의 절삭력 제어)

  • 정만실;조동우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.842-846
    • /
    • 1997
  • Micro-hole drilling (holes less than 0.5 mm in diameter with aspect ratios larger than 10) is gaining increased attention in a wide spectrum of precision production industries. Alternative methods such as EDM, laser drilling, etc. can sometimes replace mechanical micro-hole drilling but are not acceptable in PCB manufacture because they yield inferior hole quality and accuracy. The major difficulties in micro-hold drilling are related to wandering motions during the inlet stage, high aspect ratios, high temperature,etc. However, of all the difficulties, the most undesirable one is the increase of drilling force as the drill penetrates deeper into hold. This is caused mainly by chip related effects. Peck-drilling is thus widely used for deep hole drilling despite the fact that it leads to low productivity. Therefore, in this paper, a method of cutting force regulation is proposed to achieve continuous drilling. A proportional plus derivative (PD) and a sliding modecontrol algorithm will be implemented for controlling the spinle rotational frequeency. Experimental results will show that sliding mode control reduces the nominal cutting force and its variation better than the PD control, resulting in a number of advantages such as an increase in drill life, fast stabilization of the wandering motion, and precise positioning of the hole.

  • PDF

Effects of α2/β Volume Fraction on the Superplastic Deformation (2 상 Ti3Al-xNb 계 금속간 화합물들의 초소성 특성에 미치는 상분율의 영향)

  • 김지식
    • Transactions of Materials Processing
    • /
    • v.11 no.5
    • /
    • pp.447-456
    • /
    • 2002
  • A study has been made to investigate the boundary sliding and its accommodation mode with respect to the variation of $\alpha$$_2$/$eta$ volume fraction during superplastic deformation of two-phase Ti$_3$Al-xNb intermetallics. Step strain rate and load relaxation tests have been performed at 950, 970 and 99$0^{\circ}C$ to obtain the flow stress curves and to analyze the deformation characteristics by the theory of inelastic deformation. The results show that the grain matrix deformation and boundary sliding of the three intermetallics containing 21, 50 and 77% in $eta$ volume fractions are well described by the plastic deformation and viscous flow equations. Due to the equal accommodation of both $a^2$ and $\beta$ phases, the accommodation modes for fine-grained materials are in good agreement with the iso-strain rate models. The sliding resistance analyzed for the different boundaries is the lowest in the $\alpha$$_2$/$\alpha$$_2$ boundary, and increases in the order of $\alpha$$_2$/$\alpha$$_2$<< $\alpha$$_2$/$\beta$ = $\beta$/$\beta$, which plays an important role in controlling the superplasticity of the alloys with the various $\alpha$$_2$/$\beta$ phase ratio.