• 제목/요약/키워드: Sliding motor

검색결과 342건 처리시간 0.026초

직류 서보 전동기 제어를 위한 퍼지-슬라이딩 관측기 설계 (Design of a Fuzzy-Sliding Observer for Control of DC Servo Motor)

  • 고봉운;김낙교
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제53권5호
    • /
    • pp.338-344
    • /
    • 2004
  • This paper presents a sensorless speed control of a DC servo motor using a fuzzy-sliding observer in the presences of load disturbances. A fuzzy-sliding observer is proposed in order to estimate the speed of a motor rotor. First, a sliding observer is used to estimate the derivative of the armature current directly using the armature current mesured in the DC servo motor. Second, the optimal gain of the Luenberger observer is set up using the fuzzy control. Experimental results show the good performance in the DC servo motor system with the proposed fuzzy-sliding observer.

Position Sensorless Control of BLDC Motors Based on Global Fast Terminal Sliding Mode Observer

  • Wang, Xiaoyuan;Fu, Tao;Wang, Xiaoguang
    • Journal of Power Electronics
    • /
    • 제15권6호
    • /
    • pp.1559-1566
    • /
    • 2015
  • The brushless DC motor (BLDCM) has many advantages. As a result, it is widely used in electric vehicle (EV) drive systems. To improve the reliability of the motor control system, a position sensorless control strategy based on a sliding mode observer (SMO) is proposed. The global fast terminal sliding mode observer (GFTSMO) is proposed to enhance the control performance of the SMO control system. The advantages of the linear sliding mode and the nonsingular terminal sliding mode (NTSM) are combined in the control strategy. The convergence speed of the system state is enhanced. The motor commutation point is obtained with the observation of the back EMF, and the instantaneous torque value of the motor is calculated. Therefore, the position sensorless control of the BLDCM is realized. Experimental results show that the proposed control strategy can improve the convergence speed, dynamic characteristics and robustness of the system.

슬라이딩 모드 제어를 이용한 단상 유도전동기의 저 전류 기동 시뮬레이션 (The Low Current Starting Simulation of a Single Phase Induction Motor Using Sliding Mode Control)

  • 김효기;이병하
    • 조명전기설비학회논문지
    • /
    • 제21권8호
    • /
    • pp.44-53
    • /
    • 2007
  • 단상유도전동기의 기동전류를 줄이기 위하여 슬라이딩모드 제어기가 적용된다. 단상유도전동기의 기동전류가 정격치 이하로 유지되도록 슬라이딩모드 제어기의 스위칭 기능을 조절함으로써 전동기 입력전압이 제어되며 또한 속도도 제어된다. 슬라이딩 모드 제어기의 스위칭은 속도 오차 신호와 속도 변화량에 대하여 적절이 수행된다. 단상 유도 전동기의 기동특성이 슬라이딩 제어기를 사용하여 크게 향상될 수 있음을 보여 준다.

슬라이딩 모우드(Sliding Mode) 제어(制御)에 의한 AC Servo motor의 위치제어(位値制御)에 관한 연구(硏究) (Ac Servo motor position control using Sliding mode control)

  • 홍창희;이형기;박양수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1988년도 추계학술대회 논문집 학회본부
    • /
    • pp.53-55
    • /
    • 1988
  • The application of Sliding Mode Control for inproving the dynamic response of a Multi-Phase-Bipolar (MPB) Brushless DC motor based position Brushless DC motor system is presented. Sliding Mode Control gives fast dynamic response with no overshoot and zero steady state error. It has the important feature of bins highly robust. A design procedure is outlined for the Sliding Mode Controller for a MPB Brushless DC motor. Digital computer simulation of the overall position control system is carried out using a time domain model in the d-q reference frame.

  • PDF

퍼지-슬라이딩모드 제어를 이용한 위치제어에 관한 연구 (Position Control of Fuzzy-Sliding Mode Controller)

  • 한경욱;임영도
    • 융합신호처리학회 학술대회논문집
    • /
    • 한국신호처리시스템학회 2000년도 추계종합학술대회논문집
    • /
    • pp.221-224
    • /
    • 2000
  • We consider one of robust controller, fuzzy-sliding mode controller dealing with model uncertainty, simplified representation of nonlinear system, changed parameters of plant. We propose fuzzy-sliding mode algorithm which provides control input that has system states approaching the choosed sliding surface. This fuzzy controller has a rule base to get initial states converged on sliding surface. This algorithm Is applied to a transfer function of DC motor to be modeled simply and do position control of DC motor due to system parameters. We compare fuzzy-sliding mode controller to both sliding mode controller and fuzzy controller to identify roust control.

  • PDF

채터링 제거를 위한 유도 전동기의 슬라이딩 모드 제어기 설계 (Design of Sliding Mode Controller for Induction Motor to Remove Chattering)

  • 김성읍;곽군평;안호균
    • 전력전자학회논문지
    • /
    • 제3권3호
    • /
    • pp.240-245
    • /
    • 1998
  • 본 논문에서는 전동기의 슬라이딩 모드 제어기가 설계되었다. 슬라이딩 모드 제어기의 단점인 채터링 현상을 제거하기 위해 연속치 제어입력이 제안되었으며 제안된 기법으로 고속 마이크로 프로세서인 DSP를 이용한 유도전동기의 속도제어를 보였다. 슬라이딩 모드하에서의 유도 전동기의 각속도가 지정된 궤적을 추종하도록 동작한다. 실험 결과를 통해 제안된 방법의 유용성을 보였다.

  • PDF

연속 슬라이딩 모드를 이용한 공압모터 구동 볼스크류 위치제어 시스템 (The Ball Screw Position Control System Driven by a Pneumatic Motor Using Continous Sliding Mode)

  • 김근묵
    • 한국산업융합학회 논문집
    • /
    • 제11권4호
    • /
    • pp.209-216
    • /
    • 2008
  • The ball screw position control system driven by a pneumatic motor using continuous sliding mode is proposed. The design and performance of proposed servo system are presented by means of examples tested under practical service conditions. Results of experimental implementation on the proposed system illustrate the effectiveness of the ball screw position control system driven by a pneumatic motor using continuous sliding mode as a servo pneumatic actuator driven by a pneumatic motor.

  • PDF

최단시간 슬라이딩 면에 의한 스텝모터의 위치제어 (A position control of step motor with minimum time sliding surface)

  • 유완식;박형남;김영석
    • 제어로봇시스템학회논문지
    • /
    • 제1권2호
    • /
    • pp.99-104
    • /
    • 1995
  • For the robust control, sliding mode control has gained a great attention. Sliding mode control has the good robustness, because it makes the state of system reach the origin of the state space, by a varying the structure of system on the sliding surface. The slope of sliding surface affects to the control performance. If it is small, robustness is increased at the expense of reaching time. On the contrary, if it is large, reaching time is decreased at the expense of robustness and overshoot. In this paper, to design the optimal sliding surface, optimal control theory is introduced. To confirm the validity of the proposed method, the position control of step motor is implemented.

  • PDF

A Fuzzy Predictive Sliding Mode Control for High Performance Induction Motor Position Drives

  • Bayoumi E.H.E.;Nashed M.N.F.
    • Journal of Power Electronics
    • /
    • 제5권1호
    • /
    • pp.20-28
    • /
    • 2005
  • This paper presents a fuzzy predictive sliding mode control for high performance induction motor position drives. A new simplified inner-loop sliding-mode current control scheme based on a nonlinear mathematical model of an induction motor is introduced. Novel predictive fuzzy logic PI and PID controllers are used in speed and position loops, respectively. Sliding-mode current controllers and fuzzy predictive logic controllers are designed based on indirect vector control. The overall system performance is examined under different dynamic operating conditions. The performance of the drive system is robust and stable, and insensitive to parameters and operating condition variations even though non-exact system parameters are used in the implementation of the proposed controllers.

Design of Sliding-mode Observer for Robust Speed Sensorless Induction Motor Drive

  • Son, Young-Dae;Lee, Jong-Nyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.488-492
    • /
    • 2004
  • In this paper, the design of a speed sensorless vector control system for induction motor is performed by using a new sliding mode technique based on current model flux observer. A current and flux observer based on the current estimation error is constructed. The proposed current observer includes a sliding mode function, which is derivative of the flux. That is, sliding mode observer which allows the estimation of both the rotor speed and flux based on the measurement of motor terminal quantities, would be proposed. And, a synergetic speed controller using the estimated speed signal is designed to stabilize the speed loop. Simulation results are presented to confirm the theoretical analysis, and to show the system performance with different observer gains and the influence of the motor parameter.

  • PDF