• Title/Summary/Keyword: Sliding mode

Search Result 1,586, Processing Time 0.041 seconds

Design and Implementation of an Adaptive Sliding-Mode Observer for Sensorless Vector Controlled Induction Machine Drives

  • Zhang, Yanqing;Yin, Zhonggang;Liu, Jing;Tong, Xiangqian
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1304-1316
    • /
    • 2018
  • An adaptive sliding-mode observer for speed estimation in sensorless vector controlled induction machine drives is proposed in this paper to balance the dilemma between the requirement of fast reaching transient and the chattering phenomenon reduction on the sliding-mode surface. It is well known that the sliding-mode observer (SMO) suffers from the chattering phenomenon. However, the reduction of the chattering phenomenon will lead to a slow transient process. In order to balance this dilemma, an adaptive exponential reaching law is introduced into SMO by optimizing the reaching way to the sliding-mode surface. The adaptive exponential reaching law is based on the options of an exponential term that adapts to the variations of the sliding-mode surface and system states. Moreover, the proposed sliding-mode observer considering adaptive exponential reaching law, which is called adaptive sliding-mode observer (ASMO), is capable for reducing the chattering phenomenon and decreasing the reaching time simultaneously. The stability analysis for ASMO is achieved based on Lyapunov stability theory. Simulation and experimental results both demonstrate the correctness and the effectiveness of the proposed method.

Sliding Mode Control using Neural Network for a Robot Manipulator (로봇 매니퓰레이터를 위한 신경회로망을 이용한 간편 슬라이딩 모드 제어)

  • 박윤명;박양수;최부귀
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.355-355
    • /
    • 2000
  • The position control accuracy of a robot manipulator is significantly deteriorated when a long arm robot is operated at a high speed. This paper presents a very simple sliding mode control which eliminates multiple mode residual vibration in a 개bot manipulator. The neural network is used to avoid that sliding mode condition is deviated due to the change of system parameter and disturbance. This paper is suggested control system which designed by sliding mode controller using neural network. The effectiveness of proposed scheme is demonstrated through computer simulation.

  • PDF

A Design of Integral Sliding Mode Suspension Controller to Reject the Disturbance Force Acting on the Suspension System in the Magnetically Levitated Train System (자기부상 열차 시스템에서 추진 장치에서 발생하는 부상 간섭력의 영향을 제거하기 위한 적분형 Sliding Mode 부상 제어기 설계)

  • Lee, Jun-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.12
    • /
    • pp.1152-1160
    • /
    • 2007
  • In this paper we deal with a design of integral sliding mode controller to reject the disturbance force acting on the suspension system in the magnetically levitated system which is propelled by the linear induction motor. The control scheme comprises an integral controller which is designed for achieving zero steady-state error under step disturbances, and a sliding mode controller which is designed for enhancing robustness under plant uncertainties. A proper continuous design signal is introduced to overcome the chattering problem. The disturbance force produced by the linear motor is formularized by using a curve fitting of the experimental raw data. Computer simulations show the effectiveness of the designed integral sliding mode controller to reject the disturbance force.

Reconfigurable Flight Control System Design Using Sliding Mode Based Model Following Control Scheme

  • Cho, Dong-Hyun;Kim, Ki-Seok;Kim, You-Dan
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.4 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • In this paper, a reconfigurable flight control system is designed by applying the sliding mode control scheme. The sliding mode control method is a nonlinear control method which has been widely used because of its merits such as robustness and flexibility. In the sliding mode controller design, the signum function is usually included, but it causes the undesirable chattering problem. The chattering phenomenon can be avoided by using the saturation function instead of signum function. However, the boundary layer of the sliding surface should be carefully treated because of the use of the saturation function. In contrast to the conventional approaches, the thickness of the boundary layer of our approach does not need to be small. The reachability to the boundary layer is guaranteed by the sliding mode controller. The fault detection and isolation process is operated based on a sliding mode observer. To evaluate the reconfiguration performance, a numerical simulation using six degree-of-freedom aircraft dynamics is performed.

SECOND-ORDER SLIDING-MODE CONTROL FOR A PRESSURIZED WATER NUCLEAR REACTOR CONSIDERING THE XENON CONCENTRATION FEEDBACK

  • ANSARIFAR, GHOLAM REZA;RAFIEI, MAESAM
    • Nuclear Engineering and Technology
    • /
    • v.47 no.1
    • /
    • pp.94-101
    • /
    • 2015
  • This paper presents findings on the second-order sliding-mode controller for a nuclear research reactor. Sliding-mode controllers for nuclear reactors have been used for some time, but higher-order sliding-mode controllers have the added advantage of reduced chattering. The nonlinear model of Pakistan Research Reactor-1 has been used for higherorder sliding-mode controller design and performance evaluation. The reactor core is simulated based on point kinetics equations and one delayed neutron groups. The model assumes feedback from lumped fuel and coolant temperatures. The effect of xenon concentration is also considered. The employed method is easy to implement in practical applications, and the second-order sliding-mode control exhibits the desired dynamic properties during the entire output-tracking process. Simulation results are presented to demonstrate the effectiveness of the proposed controller in terms of performance, robustness, and stability.

A fuzzy Sliding Mode Control of Wheeled Mobile Robot with a Differential Drive

  • Kang, Young-Hoon;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.265-270
    • /
    • 1998
  • In this paper we introduce a modeling of wheeled mobile robot with a differential drive derived by R.M. DeSantis and using the dynamics model-ing with some disturbance term we control the wheeled mobile robot using fuzzy sliding mode control(FSMC) method. In a fuzzy control approach it is very difficult to prove the stability of the fuzzy controller. Therefore, to overcome that difficult proof of the stability in a fuzzy control method, we first propose a sliding mode controller and prove the stability of the proposed controller. Next, transforming the proposed sliding mode controller into a fuzzy sliding mode controller without changing the basic structure of the sliding mode con-troller, we easily obtain a fuzzy sliding mode con-troller(FSMC) whose stability is guaranteed with-out difficult stability proof procedure of the proposed FSMC.

  • PDF

Time-Varying Sliding Mode Following Root Locus for Higher-Order Systems (고차 시스템을 위한 근궤적을 따르는 시변 슬라이딩 모드)

  • Kim, Ga-Gue;Choi, Bong-Yeol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.4
    • /
    • pp.379-384
    • /
    • 1999
  • In this paper, we present a new time-varying sliding surface to achieve fast and robust tracking of higher-order uncertain systems. The surface passes through an initial error, and afterwards, it moves towards a predetermined target surface by means of a variable named by sliding surface gain and its intercept. Specifically, the sliding surface gain is determined so that its initial value can minimize a shifting distance of the surface and that the system roots in sliding mode can follow certain stable trajectories. The designed sliding mode control forces the system errors to stay always on the proposed surface from the beginning. By this means, the system remains insensitive to system uncertainties and disturbances for the whole time. To illustrate the effectiveness of the proposed method, the comparative study with conventional time-invariant sliding mode control is performed.

  • PDF

An LMI Approach for Designing Sliding Mode Observers (슬라이딩 모드 관측기 설계를 위한 선형행렬부등식 접근법)

  • Choi Han Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.1
    • /
    • pp.9-12
    • /
    • 2005
  • This paper presents an LMI-based method to design sliding mode observers for a class of uncertain systems. Using LIs we derive an existence condition of a sliding mode observer guaranteeing a stable sliding motion. And we give explicit formulas of the observer gain matrices. We also consider sliding mode observer design problems under an α-stability constraint or an LQ performance bound constraint. Finally, we give a numerical design example.

A Study on the Optimal Model Following Sliding Mode Control

  • Kim, Min-Chan;Park, Seung-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.38.4-38
    • /
    • 2001
  • In this paper, a novel model following sliding mode control is proposed by using a novel sliding mode with virtual state. This sliding surface has nominal dynamics of an original system and makes it possible that the Sliding Mode Control(SMC) technique is combined with the optimal controller. Its design is based on the argument system whose dynamics have one higher order than that of the original system. The reaching phase is eliminated by using an initial virtual state that makes the initial sliding function equal to zero.

  • PDF

Design of Optimal Controller Using Discrete Sliding Mode

  • Kim Min-Chan;Ahn Ho-Kyun;Kwak Gun-Pyong;Nam Jing-Rak
    • Journal of information and communication convergence engineering
    • /
    • v.2 no.3
    • /
    • pp.198-201
    • /
    • 2004
  • In this paper, the discrete optimal control is made to have the robust property of Sliding mode controller. A augmented system with a virtual state is constructed for this objective and noble sliding surface is constructed based on this system. The sliding surface is the same as the optimal control trajectory in the original system. The states follow the optimal trajectory even if there exist uncertainties. The reaching phase problem of sliding mode control is disappear in this method.