• Title/Summary/Keyword: Sliding direction

Search Result 152, Processing Time 0.024 seconds

Integral Sliding-based Dynamic Control Method using Genetic Algorithm on an Omnidirectional Mobile Robot (전방향 모바일 로봇에서 유전알고리즘을 이용한 적분 슬라이딩 기반 동적 제어 기법)

  • Park, Jin-Hyun;Choi, Young-Kiu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.12
    • /
    • pp.1817-1825
    • /
    • 2021
  • Omnidirectional mobile robots can be mobile in any direction without changing the robot's direction, making them easy to apply in many applications and providing excellent maneuverability. Omnidirectional mobile robots have non-linear dynamic components such as friction, making them difficult to model accurately. In this paper, we linearize the mobile robot system using the mobile robot's inverse dynamics and integral sliding mode control method to remove these nonlinear components. And the position and velocity gains are optimized using a genetic algorithm to realize the optimal performance of the proposed system control method. As a result of the performance evaluation, the genetic algorithm's control method showed superior performance than the control method with an arbitrary gain. And the proposed inverse dynamic and integral sliding mode control method can be applied to other control methods. It can be beneficial for designing a linear control system.

Thermoelastic Finite Element Analysis of Double horizontal Subsurface Cracks Due to Sliding Surface Traction (마찰열을 고려한 미끄럼 접촉시 내부 복수 수평균열 전파해석)

  • 이진영;김석삼;채영훈
    • Tribology and Lubricants
    • /
    • v.18 no.3
    • /
    • pp.219-227
    • /
    • 2002
  • A linear elastic fracture mechanics analysis of double subsurface cracks propagation in a half-space subjected to moving thermomechanical surface traction was performed using the finite element method. The effect of frictional heat at the sliding surface on the crack growth behavior is analyzed in terms of the thermal load and peclet number. The crack propagation direction is predicted in light of the magnitudes of the maximum shear and tensile stress intensity factor ranges. When moving thermomechanical surface traction exists, subsurface horizontal cracks are propagation in-plane crack growth rate at the beginning but they are propagation out-of-plane crack growth rate by the frictional heat which is occurrence by the repeated sliding contact.

Finite Element Analysis of Multiple Subsurface Cracks in Half-space Due to Sliding Contact

  • Lee, Sang Yun;Kim, Seock Sam
    • KSTLE International Journal
    • /
    • v.2 no.1
    • /
    • pp.12-16
    • /
    • 2001
  • A finite element analysis of crack propagation in a half-space due to sliding contact was performed. The sliding contact was simulated by a rigid asperity moving across the surface of an elastic half-surface containing single and multiple cracks. Single, coplanar, and parallel cracks were modeled to investigate the interaction effects on the crack growth in contact fatigue. The analysis was based on linear elastic fracture mechanics and the stress intensity factor concept. The crack propagation direction was predicted based on the maximum range of the shear and tensile stress intensity factors.

  • PDF

Thermoelastic Finite Element Analysis of Multiple horizontal Subsurface Cracks Due to Sliding Surface Traction (마찰열을 고려한 미끄럼 접촉시 내부 복수 수평균열 전파해석)

  • 이진영;김석삼
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.50-58
    • /
    • 2000
  • A linear elastic fracture mechanics analysis of multiful subsurface cracks propagation in a half-space subjected to moving thermomechanical surface traction was peformed using the finite element method. The effect of frictional heat at the sliding surface on the crack growth behavior is analyzed in terms of the thermal load and peclet number. The crack propagation direction is predicted in light of the magnitudes of the maximum shear and tensile stress intensity factor ranges. When moving thermomechanical surface traction exists, subsurface horizontal cracks are propagation in-plane crack growth rate at the beginning but they are propagation out-of-plane crack growth rate by the frictional heat which is occurrence by the repeated sliding contact.

  • PDF

Finite Element Analysis of Subsurface Multiple Horizontal Cracks Propagation in a Half-space Due to Sliding Contact (유한요소법을 이용한 미끄럼 접촉시 내부 복수 수평균열 전파해석)

  • 이상윤;김석삼;권영두
    • Tribology and Lubricants
    • /
    • v.16 no.5
    • /
    • pp.373-380
    • /
    • 2000
  • Finite element analysis is performed on the subsurface crack propagation in brittle materials due to sliding contact. The sliding contact is simulated by a rigid asperity moving across the surface of an elastic half-surface containing single and multiple cracks. The single crack, coplanar cracks and parallel cracks are modeled to investigate the interaction effects on the crack growth in contact fatigue. The crack location is fixed and the friction coefficients between asperity and half-space are varied to analyze the effect of surface friction on stress intensity factor for horizontal cracks. The crack propagation direction is predicted based on the maximum range of shear and tensile stress intensity factors. With a coplanar crack, the stress intensity factor was increased. However, with a parallel crack, the stress intensity factor was decreased. These results indicate that the interaction of a coplanar crack increases fatigue crack propagation, whereas that of a parallel crack decreases it.

Tribological approach for the analysis of the pedestrain slipping accident II

  • Kim, Inju
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.04a
    • /
    • pp.662-666
    • /
    • 1996
  • The variations of the surface topographical parameters for the analysis of the pedestrian slip and fall accidents during the sliding friction between the specially prepared floor specimens and three working shoes were investigated. The profile ordinate data for each flooring specimen were obtained at 1.1 .mu.m intervals using a laser scanning confocal microscope system along to the direction of sliding. A number of surface roughness parameters, that is, the centre line average (c.l.a.) and root mean square (r.m.s.) roughness, maximum height (Rtm), maximum mean peak height (Rpm), maximum mean depth (Rvm), and average asperity slope were calculated using a computer program and compared with the dynamic friction results. The analysis showed that the surface parameters undergo marked variations during the sliding process, but the variations were statistically significant. It was found that amongst various surface parameters, the maximum depth (Rvm) and the average asperity slope of the asperities were the biggest variation during the sliding proceeding. This result confirms the previous study and may suggests a new approach to monitoring the flooring environments with their service as the effort to reduce the pedestrain slip accident.

  • PDF

Direction Analysis of Surface Sliding at ${\bigcirc}{\bigcirc}$ District in the Samcheok Coalfield, Korea (삼척탄전 내 ${\bigcirc}{\bigcirc}$지역에서 발생한 지반 거동의 방향 분석)

  • Lee, Byung-Joo
    • The Journal of Engineering Geology
    • /
    • v.22 no.1
    • /
    • pp.59-65
    • /
    • 2012
  • The purpose of this study is to analyze the direction of slope sliding that occurred at the highland ${\bigcirc}{\bigcirc}$ district in the Samcheok coalfield, using geological and structural detail surveys. The study area is dominated by the Paleozoic Pyong-an Group, and sliding is concentrated in zones of alternating sandstone and shale beds in the Geumcheon and Jangsung Formations. Discontinuities in the area have a strike of NE-SW and dip at 30~$80^{\circ}$ to the NW and 40~$80^{\circ}$ to the SE. However, some have strikes of NW-SE. In slide area group 1 (P1 to P4), en echelon tension gashes were caused by shearing. The surface in the areas of group 2 (P5 to P7) and group 3 (P8 and P9) is marked by step-type tension cracks that formed due to extension. This phenomenon caused anticlockwise rotation of the sliding slope. Otherwise, the cutting of the road side through the eastern slope of the mountain contributed to surface sliding due to geographical equilibrium loss.

Effects of bracket slot size during en-masse retraction of the six maxillary anterior teeth using an induction-heating typodont simulation system

  • Kim, Ji-Yong;Yu, Won-Jae;Koteswaracc, Prasad N.K.;Kyung, Hee-Moon
    • The korean journal of orthodontics
    • /
    • v.47 no.3
    • /
    • pp.158-166
    • /
    • 2017
  • Objective: To investigate how bracket slot size affects the direction of maxillary anterior tooth movement when en-masse retraction is performed in sliding mechanics using an induction-heating typodont simulation system. Methods: An induction-heating typodont simulation system was designed based on the Calorific Machine system. The typodont included metal anterior and resin posterior teeth embedded in a sticky wax arch. Three bracket slot groups (0.018, 0.020, and 0.022 inch [in]) were tested. A retraction force of 250 g was applied in the posterior-superior direction. Results: In the anteroposterior direction, the cusp tip of the canine in the 0.020-in slot group moved more distally than in the 0.018-in slot group. In the vertical direction, all six anterior teeth were intruded in the 0.018-in slot group and extruded in the 0.020- and 0.022-in slot groups. The lateral incisor was significantly extruded in the 0.020- and 0.022-in slot groups. Significant differences in the crown linguoversion were found between the 0.018- and 0.020-in slot groups and 0.018- and 0.022-in slot groups for the central incisor and between the 0.018- and 0.022-in slot groups and 0.020- and 0.022-in slot groups for the canine. In the 0.018-in slot group, all anterior teeth showed crown mesial angulation. Significant differences were found between the 0.018- and 0.022-in slot groups for the lateral incisor and between the 0.018- and 0.020-in slot groups and 0.018- and 0.022-in slot groups for the canine. Conclusions: Use of 0.018-in slot brackets was effective for preventing extrusion and crown linguoversion of anterior teeth in sliding mechanics.

Optimum Design of Aerodynamic Shape of Cascade with Rotor-Stator Interactions (정익과 동익의 상호작용을 고려한 익렬의 공력 형상 최적 설계)

  • Cho, J. K.;Park, W. G.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.3 s.16
    • /
    • pp.40-45
    • /
    • 2002
  • Since the previous cut-and-try design algorithm requires much cost and time, the automated design technique with the CFD and optimum design algorithm has recently been concerned. In this work, the Navier-Stokes equation was solved to gain more detailed viscous flow information of cascade with rotor-stator interactions. The H-grid embedded by O-grid was generated to obtain more accurate solution by eliminating the branch cut of H-grid near airfoil surface. To handle the relative motion of the rotor to the stationary stator, the sliding multiblock method was applied and the cubic-spline interpolation was used on the block interface boundary. To validate present procedure, the time-averaged aerodynamic loads were compared with experimeatal data. A good agreement was obtained. The Modified Method of Feasible Direction (MMFD) was used to carry out the sensitivity analysis of the change of aerodynamic performance by the changes of the cascade geometry. The present optimization of the cascade gave a dramatic reduction of the drag while the lift maintains at the value within the user-specified tolerance.