• Title/Summary/Keyword: Sliding direction

Search Result 152, Processing Time 0.022 seconds

Failure mechanisms in coupled soil-foundation systems

  • Hadzalic, Emina;Ibrahimbegovic, Adnan;Dolarevic, Samir
    • Coupled systems mechanics
    • /
    • v.7 no.1
    • /
    • pp.27-42
    • /
    • 2018
  • Behavior of soil is usually described with continuum type of failure models such as Mohr-Coulomb or Drucker-Prager model. The main advantage of these models is in a relatively simple and efficient way of predicting the main tendencies and overall behavior of soil in failure analysis of interest for engineering practice. However, the main shortcoming of these models is that they are not able to capture post-peak behavior of soil nor the corresponding failure modes under extreme loading. In this paper we will significantly improve on this state-of-the-art. In particular, we propose the use of a discrete beam lattice model to provide a sharp prediction of inelastic response and failure mechanisms in coupled soil-foundation systems. In the discrete beam lattice model used in this paper, soil is meshed with one-dimensional Timoshenko beam finite elements with embedded strong discontinuities in axial and transverse direction capable of representing crack propagation in mode I and mode II. Mode I relates to crack opening, and mode II relates to crack sliding. To take into account material heterogeneities, we determine fracture limits for each Timoshenko beam with Gaussian random distribution. We compare the results obtained using the discrete beam lattice model against those obtained using the modified three-surface elasto-plastic cap model.

Preliminary Study on Development of Length-Variable Rotor Blade for Unmanned Helicopter (무인 헬리콥터용 길이가변 로터 블레이드 개발을 위한 선행연구)

  • Chun, Ju-Hong;Byun, Young-Seop;Lee, Byoung-Eon;Song, Woo-Jin;Kim, Jeong;Kang, Beom-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.3
    • /
    • pp.73-79
    • /
    • 2010
  • A preliminary study on a length-variable rotor blade for a small unmanned helicopter has been conducted. After surveys on previous researches, and examining requirements for application to a small unmanned helicopter, a length-variable rotor blade was designed and manufactured to be driven by centrifugal force from rotor revolution with no mechanical actuator. The rotor blade was divided into a fixed inboard section and an outboard section sliding in span-wise direction. In order to determine the operating conditions of the length-variable rotor during revolution, and to derive the design variables of extension spring and rotor weight, a series of analyses from multi-body dynamics solution were conducted. The manufactured prototype was verified of its length-varying mechanism from a rotor stand, the results and required future improvements are discussed.

ANALYSIS OF WAVE VELOCITY FOR TEMPERATURE PROPERGATION IN A MECHANICAL FACE SEAL (기계평면시일에서 온도전파를 위한 파속도의 이론적해석)

  • 김청균
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1987.06a
    • /
    • pp.50-56
    • /
    • 1987
  • A mechanical face seal is most commonly used to seal liquids and gases at various speeds, pressures and temperatures. The primary seal ring is in sliding contact with the seal seat and as a result heat in the vicinity of the interface is generated. Local temperatures at points along the circumferential direction will fluctuate as asperities on the surfaces pass. This kind of fluctuation of temperature has been investigated to take place. This may lead to the hot spots phenomenon between the contacting asperities. Sibley and Allen showed photographic evidence of systemically moving hot spots in the contact zone. The appearance of such a temperature disturbance has been attributed to a kind of thermoelastic instabilities between two surfaces: This involves a feedback loop which comprises localized elevation of frictional heating, resultant localized thermal bulding, localized pressure increase as the result of the bulging and futher elevation of frictional heating as the result of the pressure increase. The heating of hot spots will be continued until the expanded material due to the frictional heating is worn off. Therefore to predict the speed of temperature propagation into the body is essential to the analysis of heat transfer on the edge of the seal.

  • PDF

Effect of Hot Extrusion on the Mechanical Properties of 6061 Aluminum Alloy composites Reinforced with SiC whisker (SiC휘스커로 강화한 6061 Al합금 복합재료의 기계적 특성에 미치는 열간압출의 영향)

  • Kim, Jun-Su;Lim, Su-Geun
    • Journal of Korea Foundry Society
    • /
    • v.16 no.2
    • /
    • pp.132-140
    • /
    • 1996
  • Both cast and extruded composites of SiC whisker reinforced 6061 Al alloy matrix were fabricated by high pressure infiltration of the alloy melt into the SiC preform and subsequent hot extrusion of the composite ingots. The micro structures, age hardening behavior and mechanical properties have been examined on the both cast and extruded composites of SiCw/6061. The cast composites of SiCw/6061 were obtained in which SiC whiskers were randomly oriented. Hot extrusion of these cast composites lead to alignment of the whisker in the direction of extrusion. Strengthening effect of whisker in the extruded composites is lower than that of the cast composites. The cast composites of SiCw/6061 showed higher thensile strength and lower elongation than extruded composites of SiCw/6061 at all testing temperatures. Lower tensile strength and higher elongation of the extruded composites were attributable to fine grain structures in which grain boundary sliding occruued preferentially at elevated temperatures.

  • PDF

Tribological Failure Study of Manual Transmissions in Front Engine and Front Wheel Drive Vehicle (전륜구동 수동변속기에 대한 트라이볼로지적 고장사례 연구)

  • Kim, Chung-Kyun;Lee, Il-Kwon
    • Tribology and Lubricants
    • /
    • v.24 no.6
    • /
    • pp.285-290
    • /
    • 2008
  • The purpose of this paper is to present the case study of tribological failure analysis on the gear damages, oil leakage, and sealant sealing in a manual transmission of front engine and front wheel drive vehicle. The manual transmission is to change the speed range and direction of the engines depending on the driving conditions by friction driving forces with input and output gear system. The material property and surface roughness of the gears are strongly related to the gear noise and micro-vibration, oil leakage and wear, which may decrease the real contact area of the gear and the strength of the oil film thickness between the driving gear and driven one. The O-ring damage of speedometer driven gear and bad sealant sealing of oil pan may produce oil leakage through the contact surfaces, which cause the oil shortage and seizure on the sliding surfaces of the transaxle gears. In the failure case study, the proper repair working and good lubrication are very important for the long life of the transaxle without any tribological failures and oil leakage.

Lubrication Characteristics of Surface Textured Parallel Thrust Bearing with Ellipsoidal Dimples (타원체 딤플로 Texturing한 평행 스러스트 베어링의 윤활특성)

  • Park, Tae-Jo;Kim, Min-Gyu
    • Tribology and Lubricants
    • /
    • v.32 no.5
    • /
    • pp.147-153
    • /
    • 2016
  • Friction reduction between machine components is important for improving their efficiency and lifespan. In recent years, surface texturing has received considerable attention as a viable means to enhance the efficiency and tribological performance of highly sliding mechanical components such as parallel thrust bearings, mechanical face seals, and piston rings. In this study, we perform lubrication analysis to investigate the effect of dimple shapes and orientations on the lubrication characteristics of a surface textured parallel thrust bearing. Numerical analysis involves solving the continuity and Navier-Stokes equations using a commercial computational fluid dynamics (CFD) code, FLUENT. We use dimples consisting of hemispherical and different semiellipsoidal orientations for simulation. We compare pressure and streamline distributions, load capacity, friction force, and leakage flowrate for different numbers of dimples and orientations. We find that the dimple shapes, orientations, and their numbers starting from an inlet influence the lubrication characteristics. The results show that partial texturing of the bearing inlet region, and the ellipsoidal dimples with the major axis aligned along the lubricant flow direction exhibit the best lubrication characteristics in terms of higher load capacity and lower friction. The results can be used in the design of optimum dimple characteristics for parallel thrust bearings, for which further research is required.

Numerical analysis of rock behavior with crack model implementation (균열모형을 이용한 암석거동의 수치해석)

  • 전석원
    • Tunnel and Underground Space
    • /
    • v.9 no.1
    • /
    • pp.56-63
    • /
    • 1999
  • Rock behaves in a complex way due to the discontinuities. To describe the complicated failure and deformation behavior of rock, many researches were focused on the development of crack models. This study discusses the validity of the sliding and shear crack model to systematically fractured rock, i.e. coal. The model was also implemented into a numerical analysis. For that, a finite element program was modified in several ways. To describe the transverse isotropy in two-dimensional analysis, the stress-strain relationship was modified for the direction of the axis of symmetry. Also, the changes of the effective elastic moduli according to the crack growth were calculated. A simple example of two-dimensional laboratory uniaxial compression test was analyzed. The results coincided with the observations obtained from the laboratory tests.

  • PDF

Nonlinear formulation and free vibration of a large-sag extensible catenary riser

  • Punjarat, Ong-art;Chucheepsakul, Somchai
    • Ocean Systems Engineering
    • /
    • v.11 no.1
    • /
    • pp.59-81
    • /
    • 2021
  • The nonlinear formulation using the principle of virtual work-energy for free vibration of a large-sag extensible catenary riser in two dimensions is presented in this paper. A support at one end is hinged and the other is a free-sliding roller in the horizontal direction. The catenary riser has a large-sag configuration in the static equilibrium state and is assumed to displace with large amplitude to the motion state. The total virtual work of the catenary riser system involves the virtual strain energy due to bending, the virtual strain energy due to axial deformation, the virtual work done by the effective weight, and the inertia forces. The nonlinear equations of motion for two-dimensional free vibration in the Cartesian coordinate system is developed based on the difference between the Euler's equations in the static state and the displaced state. The linear and nonlinear stiffness matrices of the catenary riser are obtained and the eigenvalue problem is solved using the Galerkin finite element procedure. The natural frequencies and mode shapes are obtained. The results are validated with regard to the reference research addressing the accuracy and efficiency of the proposed nonlinear formulation. The numerical results for free vibration and the effect of the nonlinear behavior for catenary riser are presented.

Numerical calculation method for response of friction pendulum system when XY shear keys are sheared asynchronously

  • Wei, Biao;Fu, Yunji;Jiang, Lizhong;Li, Shanshan
    • Structural Engineering and Mechanics
    • /
    • v.81 no.5
    • /
    • pp.591-606
    • /
    • 2022
  • When the friction pendulum system and shear keys work together to resist the ground motion, which inclined inputs (non 45°) to the bridge structure, the shear keys in XY direction will be sheared asynchronously, endowed the friction pendulum system with a violent curvilinear motion on the sliding surface during earthquakes. In view of this situation, firstly, this paper abandons the equivalent linearization model of friction and constructs a Spring-Coulomb friction plane isolation system with XY shear keys, and then makes a detailed mechanical analysis of the movement process of friction pendulum system, next, this paper establishes the mathematical model of structural time history response calculation by using the step-by-step integration method, finally, it compiles the corresponding computer program to realize the numerical calculation. The results show that the calculation method in this paper takes advantage of the characteristic that the friction force is always µmg, and creatively uses the "circle making method" to express the change process of the friction force and resultant force of the friction pendulum system in any calculation time step, which can effectively solve the temporal nonlinear action of the plane friction; Compared with the response obtained by the calculation method in this paper, the peak values of acceleration response and displacement response calculated by the unidirectional calculation model, which used in the traditional research of the friction pendulum system, are smaller, so the unidirectional calculation model is not safe.

Study on the Travel and Tractive Characteristics of The Two-Wheel Tractor on the General Slope Ground (II)-Dynamic Side-overturn of the Tiller-trailer System- (동력경운기의 경사지견인 및 주행특성에 관한 연구 (II)-동력경운기-트레일러계의 욍골동 및 동횡전도한계)

  • 송현갑;정창주
    • Journal of Biosystems Engineering
    • /
    • v.3 no.1
    • /
    • pp.1-19
    • /
    • 1978
  • Power tiller is a major unit of agricultural machinery being used on farms in Korea. About 180.000 units are introduced by 1977 and the demand for power tiller is continuously increasing as the farm mechanization progress. Major farming operations done by power tiller are the tillage, pumping, spraying, threshing, and hauling by exchanging the corresponding implements. In addition to their use on a relatively mild slope ground at present, it is also expected that many of power tillers could be operated on much inclined land to be developed by upland enlargement programmed. Therefore, research should be undertaken to solve many problems related to an effective untilization of power tillers on slope ground. The major objective of this study was to find out the travelling and tractive characteristics of power tillers being operated on general slope ground.In order to find out the critical travelling velocity and stability limit of slope ground for the side sliding and the dynamic side overturn of the tiller and tiller-trailer system, the mathematical model was developed based on a simplified physical model. The results analyzed through the model may be summarized as follows; (1) In case of no collision with an obstacle on ground, the equation of the dynamic side overturn developed was: $$\sum_n^{i=1}W_ia_s(cos\alpha cos\phi-{\frac {C_1V^2sin\phi}{gRcos\beta})-I_{AB}\frac {v^2}{Rr}}=0$$ In case of collision with an obstacle on ground, the equation was: $$\sum_n^{i=1}W_ia_s\{cos\alpha(1-sin\phi_1)-{\frac {C_1V^2sin\phi}{gRcos\beta}\}-\frac {1}{2}I_{TP} \( {\frac {2kV_2} {d_1+d_2}\)-I_{AB}{\frac{V^2}{Rr}} \( \frac {\pi}{2}-\frac {\pi}{180}\phi_2 \} = 0 $$ (2) As the angle of steering direction was increased, the critical travelling veloc\ulcornerities of side sliding and dynamic side overturn were decreased. (3) The critical travelling velocity was influenced by both the side slope angle .and the direct angle. In case of no collision with an obstacle, the critical velocity $V_c$ was 2.76-4.83m/sec at $\alpha=0^\circ$, $\beta=20^\circ$ ; and in case of collision with an obstacle, the critical velocity $V_{cc}$ was 1.39-1.5m/sec at $\alpha=0^\circ$, $\beta=20^\circ$ (4) In case of no collision with an obstacle, the dynamic side overturn was stimu\ulcornerlated by the carrying load but in case of collision with an obstacle, the danger of the dynamic side overturn was decreased by the carrying load. (5) When the system travels downward with the first set of high speed the limit {)f slope angle of side sliding was $\beta=5^\circ-10^\circ$ and when travels upward with the first set of high speed, the limit of angle of side sliding was $\beta=10^\circ-17.4^\circ$ (6) In case of running downward with the first set of high speed and collision with an obstacle, the limit of slope angle of the dynamic side overturn was = $12^\circ-17^\circ$ and in case of running upward with the first set of high speed and collision <>f upper wheels with an obstacle, the limit of slope angle of dynamic side overturn collision of upper wheels against an obstacle was $\beta=22^\circ-33^\circ$ at $\alpha=0^\circ -17.4^\circ$, respectively. (7) In case of running up and downward with the first set of high speed and no collision with an obstacle, the limit of slope angle of dynamic side overturn was $\beta=30^\circ-35^\circ$ (8) When the power tiller without implement attached travels up and down on the general slope ground with first set of high speed, the limit of slope angle of dynamic side overturn was $\beta=32^\circ-39^\circ$ in case of no collision with an obstacle, and $\beta=11^\circ-22^\circ$ in case of collision with an obstacle, respectively.

  • PDF