• Title/Summary/Keyword: Sliding contact analysis

Search Result 172, Processing Time 0.023 seconds

Stress Intensity Factors and Possible Crack Propagation Mechanisms for a Crack Surface in a Polyethylene Tibia Component Subject to Rolling and Sliding Contact (구름마찰 접촉하중시 Polyethylene Tibia 표면균열의 응력확대계 수와 복합전파거동에 관한 연구)

  • Kim, Byung-Soo;Moon, Byung-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.12
    • /
    • pp.2019-2027
    • /
    • 2003
  • Pitting wear is a dominant from of polyethylene surface damage in total knee replacements, and may originate from surface cracks that propagate under repeated tribological contact. In this study, stress intensity factors, K$\_$I/and $_{4}$, were calculated for a surface crack in a polyethylene-CoCr-bone system under the rolling and/or sliding contact pressures. Crack length and load location were considered in determination of probable crack propagation mechanisms and fracture modes. Positive K$\_$I/ values were obtained for shorter cracks in rolling contact and for all crack lengths when the sliding load was apart from the crack. $_{4}$ was the greatest when the load was directly adjacent to the crack (g/a=${\pm}$1). Sliding friction caused a substantial increase of both K$\_$I/$\^$max/ and $_{4}$$\^$max/. The effective Mode I stress intensity factors, K$\_$eff/, were the greatest at g/a=${\pm}$1, showing the significance of high shear stresses generated by loads adjacent to surface cracks. Such behavior of K$\_$eff/ suggests mechanisms for surface pitting by which surface cracks may propagate along their original plane under repeated rolling or sliding contact.

Study for Possible Crack Propagation Mechanisms for a Surface Cracked in a Polyethylene Tibia Component Subject to Rolling and Sliding Contact (구름마찰접촉하중 시 Polyethylene tibia 요소의 표면균열 복합전파 거동에 관한 연구)

  • Kim, B.S.;Moon, B.Y.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1222-1227
    • /
    • 2003
  • Pitting wear is a dominant form of polyethylene surface damage in total knee replacements, and may originate from surface cracks that propagate under repeated tribological contact. In this study, stress intensity factors, $K_{I}$ and $K_{II}$, were calculated for a surface crack in a polyethylene - CoCr - bone system under the rolling and/or sliding contact pressures. Crack length and load location were considered in determination of probable crack propagation mechanisms and fracture modes. Positive $K_{I}$ values were obtained for shorter cracks in rolling contact and for all crack lengths when the sliding load was apart from the crack. $K_{II}$, was the greatest when the load was directly adjacent to the crack $(g/a={\pm}1)$. Sliding friction caused a substantial increase of both $K_{I}^{max}$ and $K_{II}^{max}$. The effective Mode I stress intensity factors, $K_{eff}$, were the greatest at $g/a={\pm}1$, showing the significance of high shear stresses generated by loads adjacent to surface cracks. Such behavior of $K_{eff}$ suggests mechanisms for surface pitting by which surface cracks may propagate along their original plane under repeated rolling or sliding contact.

  • PDF

Analysis of sliding/Impacting Wear in T7be to Convex Spring Contact and Relevant Contact Problem

  • Kim, Hyung-Kyu;Lee, Young-Ho;Heo, Sung-Pil;Jung, Youn-Ho;Ha, Jae-Wook;Kim, Seock-Sam;Jeon, Kyeong-Lak
    • KSTLE International Journal
    • /
    • v.3 no.1
    • /
    • pp.60-67
    • /
    • 2002
  • Wear on the tube-to-spring contact is investigated experimentally, The vibration of the tube causes the wear while the springs support it As for the supporting conditions, the contacting normal farce of 5 N,0 N and the gap of 0.1 mm are applied. The gap condition is for considering the influence of simultaneous impacting and sliding on wear. The wear volume and depth decreases in the order of the 5 N,0 N and the gap conditions. This is explained from the contact geometry of the spring, which is convex of smooth contour, The contact shear force is regarded smaller in the case of the gap existence compared with the other conditions. The wear mechanism is considered from SEM observation of the worn surface. The variation of the normal contact traction is analysed using the finite element analysis to estimate the slip displacement range on the contact with consulting the fretting map.

Effect of the Friction Characteristics of Sliding Contacts on Electrical Signal Transmission

  • Jang, Ho;Park, Hyung Kyu
    • KSTLE International Journal
    • /
    • v.2 no.1
    • /
    • pp.22-28
    • /
    • 2001
  • A resin bonded copper-graphite brush was investigated to evaluate the characteristics electrical signal transmission through a sliding contact as a function of the relative amount of graphite and copper in the brush. Particular attention was given to the correlation between electrical signal fluctuation and tribological properties in an electrical sliding contact system. A ring-on-block type tribotester was used for this experiment and the ring was made from pure copper. Results showed that a copper-graphite brush at a particular composition range exhibited the most stable frictional behavior with a minimum voltage drop. The amount of voltage drop at the friction interface was affected by the surface roughness, transfer film formation at the friction interface, and the real area of contact. Microscopic observations and the surface analysis showed a good agreement with the results from this experiment. The results also indicated that the electrical signal flunctuation was directly associated with the oscillation of the coefficient of friction during sliding by nanoscale variation of contacts at the friction interface.

  • PDF

Analysis of Incipient Sliding Contact with Orthotropic Friction Condition Subjected to Tangential Load and Twisting Moment (접선하중과 비틀림모멘트를 받는 직교이방성 마찰조건의 정지미끄럼접촉 해석)

  • 이성철;곽병만;권오관
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.8
    • /
    • pp.2026-2038
    • /
    • 1994
  • A numerical scheme is developed for the analysis of incipient sliding contact with orthotropic friction condition subjected to tangential load and twisting moment. The inherent nonlinearity in the orthotropic friction law has been treated by a polyhedral friction law. Then, a three-dimensional linear complementarity problem(LCP) formulation in an incremental form is obtained, and the existence of a solution is investigated. A Lemke's complementary pivoting algorithm is used for solving the LCP. The scheme is illustrated by spherical contact problems, and the effects of eccentricity of elliptical friction domain on the traction and stick region are discussed.

Finite Element Analysis of Subsurface Multiple Horizontal Cracks Propagation in a Half-space Due to Sliding Contact (유한요소법을 이용한 미끄럼 접촉시 내부 복수 수평균열 전파해석)

  • 이상윤;김석삼;권영두
    • Tribology and Lubricants
    • /
    • v.16 no.5
    • /
    • pp.373-380
    • /
    • 2000
  • Finite element analysis is performed on the subsurface crack propagation in brittle materials due to sliding contact. The sliding contact is simulated by a rigid asperity moving across the surface of an elastic half-surface containing single and multiple cracks. The single crack, coplanar cracks and parallel cracks are modeled to investigate the interaction effects on the crack growth in contact fatigue. The crack location is fixed and the friction coefficients between asperity and half-space are varied to analyze the effect of surface friction on stress intensity factor for horizontal cracks. The crack propagation direction is predicted based on the maximum range of shear and tensile stress intensity factors. With a coplanar crack, the stress intensity factor was increased. However, with a parallel crack, the stress intensity factor was decreased. These results indicate that the interaction of a coplanar crack increases fatigue crack propagation, whereas that of a parallel crack decreases it.

Location determining method of critical sliding surface of fillings in a karst cave of tunnel

  • Lin, P.;Li, S.C.;Xu, Z.H.;Huang, X.;Pang, D.D.;Wang, X.T.;Wang, J.
    • Geomechanics and Engineering
    • /
    • v.16 no.4
    • /
    • pp.415-421
    • /
    • 2018
  • A location determining method is proposed for critical sliding surface in the stability analysis of the filling materials in karst caves. First, a preliminary location of the sliding surface is determined based on simulation results which includes displacement contour and plastic zone. The sliding surface will locate on the bottom contact interface when the friction angle is relative small. However, a weakened contact interface always becomes the critical sliding surface no matter what the friction angle is. Then when the friction angle becomes larger, the critical sliding surface inside fillings can be determined by a parabola, the coefficient of which increases linearly with the friction angle under the same cohesion. Finally, the critical sliding surface approximately remains unchanged with friction angle. The influence of cohesion is similar to that of friction angle. Although affected by shape, size or position of the karst cave, the critical sliding surface mainly depends on both friction angle and cohesion. Thus, this method is always useful in determining the critical sliding surface.

Frictionally Excited Thermoelastoplastic instability in sliding contact system (미끄러짐 마찰 접촉하는 시스템에서의 열탄소성 불안정성 연구)

  • Ahn, Seong-Ho;Jang, Yong-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.144-149
    • /
    • 2008
  • A transient finite element simulation is developed for the two-dimensional stationary elastoplastic layer between sliding layers, to investigate thermoelastoplastic instability(TEPI) due to frictional heating in the material. The analysis will show some differences between the case of thermoelastic instability and TEPI, especially according to the contact pressure above yield stress. A transient behavior of contact pressure is captured to explain the behavior of thermoplasticity of contact with different sliding velocity. The instability of contact pressure in the long range of braking time will be explored to understand the generation mechanism of hot spots.

  • PDF

Ceramic-Ceramic Wear of Zirconia/Alumina Composites for the Application of Total Hip Replacement (인공 고관절 골두용 세라믹 복합재료에 대한 세라믹-세라믹 접촉 마멸 특성 분석)

  • Lee Kwon-Yong;Kim Hwan;Kim Dae-Jun;Lee Myong-Hyon;Seo Won-Seon
    • Tribology and Lubricants
    • /
    • v.21 no.5
    • /
    • pp.216-220
    • /
    • 2005
  • The sliding wear behaviors of three different compositions of novel low temperature degradation-free zirconia/alumina (LTD-free Z/A) composites were examined in a ceramic-ceramic contact pair. The wear tests were performed by using a pin-on-disk type wear tester in a linear reciprocal sliding motion with a line contact in both dry and bovine serum lubricated conditions at room temperature. From the results of dry sliding wear tests, Z/A#1((5.3Y, 4.6Nb)-TZP/80 $vol\%Al_2O_3$) showed the best wear resistance among three kinds of LTD-free Z/A composites. For the bovine serum lubricated sliding wear tests, wear was too little to be measured for all kinds of Z/A composites. These novel LTD-free Z/A composites having excellent wear resistance demonstrated a potential as the alternative materials for the ceramic-ceramic contact pairs of femoral head and acetabular liner in total hip replacement.

The Safety Study on High Tension Bolted Splice by Sliding and Plastic Analysis (고장력볼트 연결부의 미끄럼 및 소성해석에 의한 안전도 연구)

  • Bang, Myung-Seok
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.4
    • /
    • pp.110-114
    • /
    • 2003
  • In this study is proposed the advanced elasto-plastic analytical method which can identify complex structural behaviors on the splice part of steel structures such as sliding and plastic contact problem between splice plates and blots. Compliated boundary conditions and various manufacturing defects are considered in various analytical cases. In the design or repair phase the plastic behavior and ultimate strength of splice parts should be very carefully verified to extend the service life of steel structures.