• Title/Summary/Keyword: Sliding contact analysis

Search Result 172, Processing Time 0.026 seconds

Development of a Finite Element Model for Crashworthiness Analysis of a Small-Sized Bus (소형버스 정면 충돌 특성 해석을 위한 유한요소 모델의 개발)

  • 김학덕;송주현;오재윤
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.153-161
    • /
    • 2002
  • This paper develops a finite element model for crashworthiness analysis ova small-sized bus. The full vehicle finite element model is composed of 31,982 shell elements,599 beam elements,42 bar elements, and 34,204 nodes. The model uses four material models (such as elastic, elastic-plastic(steel), rigid. and elastic-plastic (rubber) material model) of PAM-CRASH. The model uses four contact types to define sliding interfaces in ten areas. A frontal crash test using an actual vehicle with 30mph velocity to a rigid barrier is carried out. Vehicle pulses at lower part of left and right b-pillar are measured, and deformed shapes of frame and driver seat's lower left area are photographed. A frontal crash simulation using the developed full vehicle finite element model is performed with PAM-CRASH installed in super computer SP2. The simulation is performed with the same conditions as the test. The measured vehicle pulses and photographed deformed shapes from the test are compared to ones from the simulation to validate the reliability of the developed model.

Stress-strain distribution at bone-implant interface of two splinted overdenture systems using 3D finite element analysis

  • Hussein, Mostafa Omran
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.3
    • /
    • pp.333-340
    • /
    • 2013
  • PURPOSE. This study was accomplished to assess the biomechanical state of different retaining methods of bar implant-overdenture. MATERIALS AND METHODS. Two 3D finite element models were designed. The first model included implant overdenture retained by Hader-clip attachment, while the second model included two extracoronal resilient attachment (ERA) studs added distally to Hader splint bar. A non-linear frictional contact type was assumed between overdentures and mucosa to represent sliding and rotational movements among different attachment components. A 200 N was applied at the molar region unilaterally and perpendicular to the occlusal plane. Additionally, the mandible was restrained at their ramus ends. The maximum equivalent stress and strain (von Mises) were recorded and analyzed at the bone-implant interface level. RESULTS. The values of von Mises stress and strain of the first model at bone-implant interface were higher than their counterparts of the second model. Stress concentration and high value of strain were recognized surrounding implant of the unloaded side in both models. CONCLUSION. There were different patterns of stress-strain distribution at bone-implant interface between the studied attachment designs. Hader bar-clip attachment showed better biomechanical behavior than adding ERA studs distal to hader bar.

Topographical Analysis of the Rubbed Surface using Fractal Dimension (프랙탈 차원을 이용한 마찰면의 형상특징 해석)

  • Park, Heung-Sik;Kim, Yeong-Hui;Jeon, Tae-Ok;Jo, Yeon-Sang;Mun, Byeong-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.11
    • /
    • pp.1737-1742
    • /
    • 2001
  • The fractal-based method for describing rubbed surface texture has aroused great interest. The determination of rubbed surface topography is believed to be extremely important in the areas of contact mechanics, adhesion and friction. In order to describe topography of the rubbed surface, the wear test was carried out with annular surfaces of wear testing specimens in dry friction. furthermore, the relation between the fractal dimensions and the frictional conditions are also investigated and fractal descriptors was applied to rubbed surface with image processing. Fractal dimension can be determined by sum of intensity difference of image surface pixel. Fractal dimension increased according as the applied load and sliding distance increase. Topography of the rubbed surface can be effectively obtained by fractal dimensions.

Wear Characteristics of Multi- span Tube Due to Turbulence Excitation (다경간 전열관의 난류 가진에 의한 마모특성 연구)

  • Kim, Hyung-Jin;Sung, Bong-Zoo;Park, Chi-Yong;Ryu, Ki-Whan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.9 s.114
    • /
    • pp.904-911
    • /
    • 2006
  • A modified energy method for the fretting wear of the steam generator tube is proposed to calculate the wear-out depth between the nuclear steam generator tube and its support. Estimation of fretting-wear damage typically requires a non-linear dynamic analysis with the information of the gap velocity and the flow density around the tube. This analysis is very complex and time consuming. The basic concept of the energy method is that the volume wear rate due to the fretting-wear phenomena Is related to work rate which is time rate of the product of normal contact force and sliding distance. The wearing motion is due to dynamic interaction between vibrating tube and its support structure, such as tube support plate and anti-vibration bar. It can be assumed that the absorbed work rate would come from turbulent flow energy around the vibrating tube. This study also numerically obtains the wear-out depth with various wear topologies. A new dissection method is applied to the multi-span tubes to represent the vibrational mode. It turns out that both the secondary side density and the normal gap velocity are important parameters for the fretting-wear phenomena of the steam generator tube.

Development of a Finite Element Human Neck Model for Neck Injury Analysis - Application to Low Speed Rear-End Offset Impacts - (목상해 분석을 위한 상세 유한요소 목모델 개발 - 저속후방 오프셋 충돌에 따른 분석 -)

  • Kim Young Eun;Jo Hui Chang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.6 s.237
    • /
    • pp.913-920
    • /
    • 2005
  • Compared to previous in-vitro test, FE model showed reliable motion patterns. A finite element model of a 50th percentile male neck was developed to study the mechanics of whiplash injury while the rear impacts. The model was consisted of the whole cervical vertebrae including part of occipital, intervertebral discs. which were modeled using linear viscoelastic materials and posterior elements. The sliding interfaces were defined to simulate contact phenomena in facet joints and in odontoid process. All ligaments and atlanto-occipital membrane were modeled as nonlinear bar elements. Only muscle elements were not considered. Motion of each cervical vertebra was obtained from the dynamic simulation with a MADYMO model for 15 km/h $40\%$ rear end offset impacts. Soft tissue neck injury(STNI) was investigated with a developed FE model. In FE model analysis, the high stress was appeared at C3/C4 disc in offset impact. Further research is still needed in order to improve the developed neck FE model for many different crash patterns.

Car-door-controlled collision protection system using proximity sensor (근접센서를 이용한 차량 도어 제어 충돌 방지 시스템)

  • Lee S.H.;Cho H.S.;Heo J.K.;Lee J.H.;Kim W.K.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.971-975
    • /
    • 2005
  • In this study, a car-door-controlled collision protection system using proximity sensor is proposed and its preliminary analysis and several preliminary experiments are conducted. The proposed system has three additional sub-components on the car-door that is, a pair of extra electro-magnetic actuator that are attached to the sliding bar of the open/close car-door four-bar mechanism, a proximity sensor that would be attached to the outside surface of the door which is likely to frequently contact to the object and a driving control circuit of the whole system. A proximity sensor is used to detect object close to the car-door, the driving control circuit provides actuating power command to the electro-magnets to generate braking force to stop the swing motion of the car-door. It is verified through kinematic analysis of the four-bar car-door open/close mechanism and through experiments that the magnitude of maximum electronic magnetic force could provide the braking force enough for this application. For this purpose, an electro-magnet driving circuit is implemented and tested. And also to increase the safety of the system a time delay circuit is implemented and tested.

  • PDF

A Comparative Analysis of the Finger Pressure and Kinematic Variables in the Forehand Hairpin Net Shot According to Proficiency (배드민턴 포핸드 헤어핀 동작 시 숙련 정도에 따른 손가락 압력 및 운동학적 변인 비교 분석)

  • Lee, Haeng-Seob;Chae, Woen-Sik;Jung, Jea-Hu
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.4
    • /
    • pp.387-394
    • /
    • 2012
  • The purpose of this study was to compare and analyze the finger pressure and kinematic variables in the forehand hairpin net shot between skilled elite players and less skilled recreational players. Eight elite players(age: $18.1{\pm}0.8yrs$, height: $176.8{\pm}1.5cm$, weight: $640.9{\pm}48.6N$) with minimum of 6 years of experience and eight recreational players(age: $27.9{\pm}1.6yrs$, height: $177.1{\pm}6.1cm$, weight: $820.5{\pm}62.8N$) with less than one year experience were recruited in this study. For each trial being analyzed, four critical instants were identified from the video recordings: Right heel contact1 (E1), Right toe-off (E2), Right heel contact2 (E3), and Shuttlecock Impact (E4). Each hairpin net shot was broken into consecutive phases: E1~E2 (Right Landing Phase: RLP), E2~E3 (Sliding Step Phase: SSP), and E3~E4 (Impact Phase: IP). Temporal parameters, shuttlecock speed, linear and angular kinematics of body segments, and finger pressures were computed for this study. The results showed that The finger pressure of the ring finger and the middle finger for the skilled group during an impact had significantly greater than those of unskilled group. It is possible that all fingers were not used in the same manner when the racket was gripped in forehand hairpin. The result also suggested that the ring finger and the middle finger pushed the racket from top to bottom while having the mid-phalanx and proximal phalanx of index finger as an axis.

Experimental Study on Shear Mechanism Caused by Textured Geomembrane (돌기형 지오멤브레인에 의한 전단 메카니즘에 관한 실험 연구)

  • 이석원
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.11c
    • /
    • pp.57-68
    • /
    • 1999
  • This paper summarizes the results of a study which uses the recently developed Optical Profile Microscopy technique (Dove and Frost, 1996) as the basis for investigating the role of geomembrane surface roughness on the shear mechanism of geomembrane/geotextile interfaces. The alternative roughness parameters which consider the direction of shearing are described. These directional parameters are compared with the existing roughness parameters, and the relationship between these directional and non-directional parameters are investigated. Then, the relationship between interface shear strength and surface roughness quantified at the interface is investigated. The results show that interface friction can be quantitatively related to the surface roughness of the geomembrane. The peak and residual interface strengths increase dramatically through the use of textured geomembranes as opposed to smooth geomembranes. For the smooth geomembranes, the sliding of the geotextile is the main shear mechanism. For the textured geomembranes, the peak interface strength is mainly mobilized through the micro-texture of the geomembrane, however, the residual interface strength is primarily attributed to macro scale surface roughness which pulls out and breaks the filaments from the geotextile. The results of this study can be extended to the other interfaces such as joints in rock mass, and also can be used to provide a quantitative framework that can lead to a significantly improved basis for the selection and design of geotextiles and geomembranes in direct contact.

  • PDF

Experimental Study of Heating Surface Angle Effects on Single Bubble Growth

  • Kim, Jeong-Bae;Kim, Hyung-Dae;Lee, Jang-Ho;Kwon, Young-Chul;Kim, Jeong-Hoon;Kim, Moo-Hwan
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.11
    • /
    • pp.1980-1992
    • /
    • 2006
  • Nucleate pool boiling experiments were performed using pure R11 for various surface angles under constant heat flux conditions during saturated pool boiling. A 1-mm-diameter circular heater with an artificial cavity in the center that was fabricated using a MEMS technique and a high-speed controller were used to maintain the constant heat flux. Bubble growth images were taken at 5000 frames per second using a high-speed CCD camera. The bubble geometry was obtained from the captured bubble images. The effects of the surface angle on the bubble growth behavior were analyzed for the initial and thermal growth regions using dimensional scales. The parameters that affected the bubble growth behavior were the bubble radius, bubble growth rate, sliding velocity, bubble shape, and advancing and receding contact angles. These phenomena require further analysis for various surface angles and the obtained constant heat flux data provide a good foundation for such future work.

Heat Transfer Characteristics under Saturated Nucleate Pool Boiling for Various Heating Surface Angles using Heater with Artificial Cavity (인공 캐비티를 가진 히터를 이용한 가열면 경사각에 따른 포화상태 풀 핵비등 열전달 기초연구)

  • Kim, Jeong-Bae
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.4
    • /
    • pp.7-14
    • /
    • 2009
  • Nucleate pool boiling experiments with constant heat flux condition were performed using pure R11 and R113 for various surface angles under saturated pool condition. A circular heater of 1 mm diameter, with artificial cavity in the center, fabricated using MEMS technique and the high-speed controller were used to maintain the constant heat flux. Images of bubble growth were taken at 5,000 frames per second using a high-speed CCD camera. The bubble geometry was obtained from the captured bubble images. The effects of surface angles on the bubble growth behaviors were analyzed as dimensional scales for the initial and thermal growth regions. The parameters for the bubble growth behaviors were bubble radius, bubble growth rate, sliding velocity, bubble shape and advancing and receding contact angles. These phenomena require further analysis for various surface angles, but this study will provide good experimental data with constant heat flux boundary condition for such works.