• Title/Summary/Keyword: Sliding contact analysis

Search Result 172, Processing Time 0.027 seconds

Adjustment Of Roll Gap For The Dimension Accuracy Of Bar In Hot Bar Rolling Process (열간 선재 압연제품의 치수정밀도 향상을 위한 롤 갭 조정)

  • 김동환;김병민;이영석;유선준;주웅용
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.1036-1041
    • /
    • 1997
  • The objective of this study is to adjust the roll gap for the dimension accuracy of bar in hot bar rolling process considering roll wear. In this study hot bar rolling processes for round and oval passes have been investigated. In order to predict the roll wear, the wear model is reformulated as an incremental form and then wear depth of roll is calculated at each deformation step on contact area using the results of finite element analysis, such as relative sliding velocity and normal pressure at contact area. Archard's wear model was applied to predict the roll wear. To know the effects of thermal softening of DCI (Ductile Cast Iron) roll material according to operating conditions, high temperature micro hardness test is executed and a new wear model has been proposed by considering the thermal softening of DCI roll expressed in terms of the main tempering curve. The new technique developed in this study for adjusting roll gap can give more systematically and economically feasible means to improve the dimension accuracy of bar with full usefulness and generality.

  • PDF

Tribological Failure Study of Manual Transmissions in Front Engine and Front Wheel Drive Vehicle (전륜구동 수동변속기에 대한 트라이볼로지적 고장사례 연구)

  • Kim, Chung-Kyun;Lee, Il-Kwon
    • Tribology and Lubricants
    • /
    • v.24 no.6
    • /
    • pp.285-290
    • /
    • 2008
  • The purpose of this paper is to present the case study of tribological failure analysis on the gear damages, oil leakage, and sealant sealing in a manual transmission of front engine and front wheel drive vehicle. The manual transmission is to change the speed range and direction of the engines depending on the driving conditions by friction driving forces with input and output gear system. The material property and surface roughness of the gears are strongly related to the gear noise and micro-vibration, oil leakage and wear, which may decrease the real contact area of the gear and the strength of the oil film thickness between the driving gear and driven one. The O-ring damage of speedometer driven gear and bad sealant sealing of oil pan may produce oil leakage through the contact surfaces, which cause the oil shortage and seizure on the sliding surfaces of the transaxle gears. In the failure case study, the proper repair working and good lubrication are very important for the long life of the transaxle without any tribological failures and oil leakage.

Real Time Analysis of Friction/Wear Characteristics of Metal Coatings with a Tribo-tester Installed in an SEM (SEM 내부에 설치된 트라이보 시험기를 통한 금속 코팅의 실시간 마찰/마모 특성 분석)

  • Kim, Hae-Jin;Kim, Dae-Eun;Kim, Chang-Lae
    • Tribology and Lubricants
    • /
    • v.34 no.6
    • /
    • pp.318-324
    • /
    • 2018
  • This study aims to visualize the friction and wear behaviors of metal coatings in real time. The main mechanism of wear is identified by observing all the processes in which wear occurs. The friction coefficients of the moments are monitored to confirm the relationship between the friction and wear characteristics of the coating. Thin Ag coatings, which are several hundred nanometers in thickness, are prepared by depositing Ag atoms on silicon substrates through a sputtering method. A pin-on-disk-type tribo-tester is installed inside a scanning electron microscope (SEM) to evaluate the friction and wear characteristics of the Ag coating. A fine diamond pin is brought into contact with the Ag coating surface, and a load of 20 mN is applied. The contact pressure is calculated to be approximately 15 GPa. The moments of wear caused by the sliding motion are visualized, and the changes in the friction characteristics according to each step of wear generation are monitored. The Ag coating can be confirmed to exhibit a wear phenomenon by gradually peeling off the surface of the coating on observing the friction and wear characteristics of the coating in real time inside the SEM. This can be explained by a typical plowing-type wear mechanism.

Development and Verification of a Dynamic Analysis Model for the Current-Collection Performance of High-Speed Trains Using the Absolute Nodal Coordinate Formulation (절대절점좌표를 이용한 고속철도 집전성능 동역학 해석 모델 개발 및 검증)

  • Lee, Jin-Hee;Park, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.3
    • /
    • pp.339-346
    • /
    • 2012
  • The pre-evaluation of the current-collection performance is an important issue for high-speed railway vehicles. In this paper, using flexible multibody dynamic analysis techniques, a simulation model of the dynamic interaction between the catenary and pantograph is developed. In the analysis model, the pantograph is modeled as a rigid body, and the catenary wire is developed using the absolute nodal coordinate formulation, which can analyze large deformable parts effectively. Moreover, for the representation of the dynamic interaction between these parts, their relative motions are constrained by a sliding joint. Using this analysis model, the contact force and loss of contact can be calculated for a given vehicle speed. The results are evaluated by EN 50318, which is the international standard with regard to analysis model validation. This analysis model may contribute to the evaluation of high-speed railway vehicles that are under development.

Numerical Wear Analysis of a Three-dimensional Rough Surface (수치적 방법을 이용한 3차원 거친 표면의 마모 해석)

  • Kim, Yunji;Suh, Junho;Kim, Bongjun;Yu, Yonghun
    • Tribology and Lubricants
    • /
    • v.36 no.4
    • /
    • pp.232-243
    • /
    • 2020
  • It is essential to predict the amount of wear and surface parameters for a surface where relative motion occurs. In the asperity-based model for wear prediction, only the average contact pressure can be obtained. Hence, the accuracy of wear analysis is poor. In this study, DC-FFT is used to obtain the pressure of each node, and wear analysis is performed by considering the effect of the pressure gradient. The numerical surface generation method is used to create Gaussian, negatively skewed, and positively skewed surfaces for wear analysis. The spatial and height distributions of each surface are analyzed to confirm the effectiveness of the generated surface. Furthermore, wear analysis is performed using DC-FFT and Archard's wear formula. After analysis, it is confirmed that all peaks are removed and only valleys remain on the surface. The RMS roughness and Sk continue to decrease and Ku increases as the cycle progresses. It is observed that the surface parameters are significantly affected by the radius of curvature of the asperity. This analysis method is more accurate than the existing average wear and truncation models because the change in asperity shape during the wear process is reflected in detail.

Optimal torque control of noncontact type eddy current brake system (비접촉식 와전류형 제동 장치의 최적 토오크 제어)

  • 이갑진;박기환;류제하
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.261-264
    • /
    • 1997
  • A contactless eddy current type braking system is developed to take advantages of the recent brake system which uses hydraulic force can show high efficiency in a certain velocity region, but not in a high velocity region, and has initial response delay time and pressure build-up time which make stopping distance longer. These are the limits of mechanical brake system of a contact type, which makes a concept brake system required. So, in this paper, the contactless brake system .of a inductive current type is chosen instead of hydraulic brake system. This brake system can be used almost forever for being no wear and contributed to lightening weight of a vehicle. Besides, the contactless brake system can be used as that of electric or solar car with anti-lock brake system. The analysis of induced electromotive force and braking torque obtained with theoretical approximate model, the design of a braking system and a nonlinear controller, and the results of simulation of the ABS, experiment are included.

  • PDF

The Influence of Surface Roughness on Interface Strength (표면 거칠기 정도가 접촉면 전단력에 미치는 영향)

  • 이석원
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.255-262
    • /
    • 1999
  • This paper summarizes the results of a study which uses the recently developed Optical Profile Microscopy technique (Dove and Frost, 1996) as the basis for investigating the role of geomembrane surface roughness on the shear strength of goomembrane/geotextile interfaces. The results show that interface friction can be quantitatively related to the surface roughness of the geomembrane. The peak and residual interface strengths increase dramatically through the use of textured geomembranes as opposed to smooth geomembranes. For the smooth geomembranes, the sliding of the geotextile is the main shear mechanism. For the textured geomembranes, the peak interface strength is mainly mobilized through the micro-texture of the geomembrane, however, the residual interface strength is primarily attributed to macro scale surface roughness which pulls out and breaks the filaments from the geotextile. The results of this study can be extended to the other interfaces such as joints in rock mass, and also can be used to provide a quantitative framework that can lead to a significantly improved basis for the selection and design of geotextiles and geomembranes in direct contact.

  • PDF

Quantitative Analysis of Wear Debris for Surface Modification Layer by Ferrography (Ferrography에 의한 표면개질층의 마모분 정량분석)

  • 오성모;이봉구
    • Tribology and Lubricants
    • /
    • v.15 no.3
    • /
    • pp.265-271
    • /
    • 1999
  • Wherever there are rotating equipment and contact between surface, there is wear and the generation of wear particles. The particles contained in the lubricating oil carry detailed and important information about the condition monitoring of the machine. This information may be deduced from particle shape, composition, size distribution, and concentration. Therefore, This paper was undertaken to Ferrography system of wear debris generated from lubricated moving machine surface. The lubricating wear test was performed under different experimental conditions using the Falex wear test of Pin and V-Block type by Ti(C, N) coated. It was shown from the test results that wear particle concentration (WPC) and wear severity Index( $I_{S}$), size distribution in normal and abnormal wear have come out all the higher value by increases sliding friction time. Wear shape is observed on the Ferrogram it was discovered a thin leaf wear debris as well as ball and plate type wear particles. This kind of large wear shape have an important effect not only metals damage, but also seizure phenomenon.

Simulation of Three Dimensional Motion of the Knee Joint in Total Knee Arthroplasty (인공 무릎 관절의 3차원 운동 시뮬레이션)

  • Kim, Ki-Bum;Son, Kwon;Moon, Byung-Young
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1310-1315
    • /
    • 2003
  • Severe osteoarthrosis of the knee joint often requires total knee arthroplasty (TKA) to yield adequate knee function. The knee joint with TKA is expected ideally to restore the characteristics, however, this is not necessarily true in the clinical cases. In this study the motions of the intact joint and the joint after TKA were investigated numerically using computer simulation. For active knee extension from 90 degrees of flexion to full extension, the intact knee joint exhibited anterior tibial translation near the full extension while it showed only rotation for other flexion angles. Physiologic external rotation of the tibia near full extension was also noted in the analytical model. The analysis of the tibial insert of three different shapes (flat, semicurved, and curved types) demonstrated characteristic rotational and sliding motions as well as different contact forces.

  • PDF

Vibration Analysis of a Stacked beam Including Frictional Contact Force (마찰 접촉력을 고려한 다발 보(Stacked Beam)의 진동 해석)

  • 이기수;임철호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.8
    • /
    • pp.1513-1518
    • /
    • 1992
  • Numerical solution technique is suggested to analyze the vibration of a spring composed of stacked beams fastened together. Bernoulli-Euler beam theory for small deflection is used, and incremental Coulomb friction law is adopted for the interface friction. The validity of the present solution technique is checked for the perfectly bonded case and the perfect sliding case.