• Title/Summary/Keyword: Sliding conditions

Search Result 594, Processing Time 0.034 seconds

A Tribological Study of SiC-Steel Couples (탄화규소-강 미끄럼에서의 마모특성)

  • 장복기;김윤주
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.1
    • /
    • pp.7-12
    • /
    • 1997
  • The wear behavior of SiC in SiC-steel sliding couple was investigated under various wear test conditions, such as solid state sliding - dry and wet air atmosphere - or lubricated sliding, sliding velocity and at-mosphere temperature. The effect of SiC fabrication process on the SiC wear rate was also studied under varying sliding velocities. Humidity of air plays a lubricating role in the solid state sliding, while the wear behavior is largely influenced by the sliding velocity, especially if the atmosphere is extremely dry. The fa-brication process of SiC and the surface roughness result in different wear rate depending on the magnitude of sliding velocity. High temperature is, among others, the most deteriorating factor of wear, thus being strongly wear-accelerating even under boundary lubrication.

  • PDF

A Study on the Friction Behavior of Natural Rubber

  • Kim, W.D.;Kim, D.J.;Nah, Chang-Woon;Lee, Y.S.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.193-194
    • /
    • 2002
  • The frictional characteristics of natural rubber plates under various conditions including sliding speed, contacted ball size, and lubrication conditions were evaluated experimentally. The frictional force and the normal force were measured by a self-made tester pin and a load cell with strain gages. In the lubrication condition, the effect of sliding speed was not significant over tested speed range. But in the none-lubrication condition, according to increase the sliding speed, the friction coefficient was decreased. The coefficients of friction under various lubrication conditions were varied from 0.03 to 0.32 and under none-lubrication condition was varied from 2.54 to 4.74.

  • PDF

The Effects of Spray Conditions on Sliding Wear Characteristics of Plasma Sprayed $Al_2O_3-40%TiO_2$Coating (Plasma용사한 $Al_2O_3-40%TiO_2$의 미끄럼마모특성에 미치는 용사조건의 영향)

  • 이한영;노정균;배상규
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.80-88
    • /
    • 2000
  • The plasma spray technics has known as one of the surface modification methods to improve the mechenical properties or the functional charactristics of materials. This paper has been aimed to investigate the effects of plasma sprayed conditions, such as spray distance and arc power level, on sliding wear properties of plasma sprayed $Al_2$O$_3$-40%TiO$_2$coating layer. The sliding wear test using pin-on-disc type wear machine, has been conducted in several sliding speed for coating layer sparyed under different conditions. The result of this paper is that the wear resistance of plasma sprayed $Al_2$O$_3$-40%TiO$_2$coating layer is fluctuated with tile spray distance and the arc power level. The wear resiatance could be improved with decreasing the spray distance and with increasing the arc power level.

  • PDF

A Study on the Wear Performances of Dibutyl 3,5-di-t-Butyl 4-Hydroxy Benzyl Phosphonate under Sliding and Rolling Contacts (미끄럼 및 구름접촉하에서 Dibutyl 3,5-di-t-Butyl 4-Hydroxy Benzyl Phosphonate의 마모성는에 관한 연구)

  • 최웅수;한흥구;권오관
    • Tribology and Lubricants
    • /
    • v.7 no.1
    • /
    • pp.40-45
    • /
    • 1991
  • Wear performances for dibutyl 3,5-di-t-butyl 4-hydroxy benzyl phosphonate (DBP) were invesitigated using the four ball test machine under sliding and also rolling contact conditions, and compared with ZDDP. DBP showed excellent antiwear performace compared with ZDDP under severe sliding contact. Also, DBP achieved a longer fatigue life than ZDDP under rolling contact conditions. The surface of the worn balls was observed using an optical microscope, and the wear derbis generated was measured using the Particle Quantifier (PQ).

Conditions for manipulation of object with multiple contacts by intelligent Jig system

  • Yashima, Masahito;Kimura, Hiroshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.522-525
    • /
    • 1995
  • A manipulation of a multiple contacted object by a Rotational Base and Single-jointed Finger mechanism(RBSF mechanism) is discussed. The manipulation is characterized by multiple contacts on an object and large motions of the object with sliding contacts. The kinematics and dynamics allowing sliding at multiple contacts are explored. The conditions for manipulation of an object at multiple contacts by the RBSF mechanism, which cannot exert arbitrary contact forces because it has a fewer number of joints than is required for active control, is presented.

  • PDF

Dynamic responses of structures with sliding base

  • Tsai, Jiin-Song;Wang, Wen-Ching
    • Structural Engineering and Mechanics
    • /
    • v.6 no.1
    • /
    • pp.63-76
    • /
    • 1998
  • This paper presents dynamic responses of structures with sliding base which limits the translation of external loads from ground excitation. A discrete element model based on the discontinuous deformation analysis method is proposed to study this sliding boundary problem. The sliding base is simulated using sets of fictitious contact springs along the sliding interface. The set of contact spring is to translate friction force from ground to superstructure. Validity of the proposed model is examined by the closed-form solutions of an idealized mass-spring structural model subjected to harmonic ground excitation. This model is also applied to a problem of a three-story structural model subjected to the ground excitation of 1940 El Centro earthquake. Analyses of both sliding-base and fixed-base conditions are performed as comparisons. This study shows that using this model can simulate the dynamic response of a sliding structure with frictional cut-off quite accurately. Results reveal that lowering the frictional coefficient of the sliding joint will reduce the peak responses. The structure responses in little deformation, but it displaces at the end of excitation.

A Study on the Rail Materials Technology for Subway Based on its Sliding Wear Behavior (지하철 레일의 미끄럼 마모거동을 고려한 재료설계에 대한 고찰)

  • Lee, Han-Young
    • Tribology and Lubricants
    • /
    • v.30 no.6
    • /
    • pp.364-369
    • /
    • 2014
  • To assess the wear behavior of rails against subway rail car wheels, we investigate the sliding wear behavior of pins derived from two types of rails (normal rails and heat-treated rails) against a disc derived from a subway rail car wheel, using a pin-on-disc-type tribometer. We base the sliding wear test conditions on the sliding conditions for wheel flange-rail gauge corner contact. We demonstrate the remarkable transition in the wear behavior of the pins derived from the rails, from severe wear to mild wear, as a function of the sliding distance. The wear rate of the heat-treated rail material in the running-in wear region is much lower than that of the normal rail material. Furthermore, the wear rates of the pins in the running-in wear region decrease with increasing hardness and with decreasing sliding speed. However, there is little difference between the heat-treated rail pin and the normal rail pin in the wear rate in the steady-state wear region. Stricter controls on the decarburized layer beneath the surface of rails are required to reduce the wear rate in the running-in wear region.

Behavior of Reciprocating Dry Sliding Wear of Plastics Against Steel (플라스틱재료의 왕복동 마찰마멸거동)

  • 김충현;안효석;정태형
    • Tribology and Lubricants
    • /
    • v.16 no.1
    • /
    • pp.1-8
    • /
    • 2000
  • Friction and wear tests have been performed on nylon, acetal resin, and PTFE (polytetrafluoroethylene), in reciprocating dry sliding conditions against steel discs. According to the results, acetal resin showed the lowest wear rates and PTFE exhibited the lowest friction coefficient. The prominent wear mechanisms found were adhesion and abrasion.

A Study on the Sliding Wear Characteristicsn of the Die Steel for the Cold Molding (냉간성형용 Die 강의 미끄럼 마멸특성에 관한 연구)

  • 전태옥;박흥식;류경곤
    • Tribology and Lubricants
    • /
    • v.9 no.1
    • /
    • pp.38-44
    • /
    • 1993
  • The present study was undertaken to investigate the dry wear characteristics of die steel STD 11 for cold molding. The wear test was experimentally carried out under different conditions using a wear device, which was made in laboratory, and in which annular surfaces of wear testing specimens wear rubbed in dry sliding condition with varying the sliding speed, contact pressure, and sliding distance. The wear loss by variation of sliding speed was much in 0.3 m/sec and less in higher speed range above its sliding speed according to formation of the boundary lubrication film. The critical sliding speed with maximum value of the specific wear rate switched over to lower speed side according. as contact pressure increased. The critical sliding distance was increased with decrease in oxidation reaction velocity. The depth below subsurface showing maximum hardness (Hv) came out at the position, $60 \mu m$, of the maximum shear stress due to strain hardening.

A Feasibility Study on Adopting Sliding Pressure Operation for Drum Type Boiler

  • Baek, SeHyun;Kim, HyunHee;Park, SangBin;Kim, YoungJoo;Park, Hoyoung
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.3
    • /
    • pp.403-407
    • /
    • 2016
  • In general, drum-type boilers are designed for base load duty and applied under constant pressure operation mode. Recently, however conditions often occur that even drum-type boilers have to operate at partial load conditions. A feasibility study on adopting the sliding pressure operation for drum-type boiler was conducted, and corresponding performance changes and effects on the equipment were analyzed by utilizing a process simulation model. As a result, the conclusion was reached that drum type boilers are able to adopt the sliding pressure operation and can improve of net efficiency at part load operation in spite of the Rankine cycle efficiency reduction due to the decreases in main steam pressure. Because of thank to improvement of high pressure turbine stage-1 internal efficiency and power savings of boiler feed water pump. The sliding pressure operation is advantageous in terms of stress level relief for boiler tube as well as maintaining the rating steam temperature at part load condition. However, cautions are required because the drum boilers have poor dynamic response characteristics which may get worse during the sliding pressure operation.