• Title/Summary/Keyword: Sliding behavior

Search Result 550, Processing Time 0.029 seconds

A Study on Friction and Wear Behavior of Carbon Fiber Reinforced Polyetheretherketone (탄소 섬유 보강 폴리에테르에테르케톤의 마찰 및 마모 거동에 관한 연구)

  • Ryoo, Sung-Kuk;Kim, Kyung-Woong
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.772-779
    • /
    • 2000
  • The friction and wear behavior of short carbon fiber reinforced polyetheretherketone was studied experimentally under dry sliding conditions against SCM440(AISI 4140) disks with a different surface roughness and hardness at the low sliding speeds and the high pressures on a pin-on-disk apparatus. Under the low disk surface roughness value the earsplitting noise and stick-slip were occurred. The increased adhesion friction and wear factor with stick-slip made the friction and wear behavior worse. Under the high disk surface hardness the break and falling-off of carbon fibers were accelerated. The carbon fibers fallen off from the matrix were ground into powder between two wear surfaces and this phenomenon caused a abrasive friction and wear factor to increase. So the friction and wear behavior became worse. With the transfer film made of wear particles formed on a disk, the carbon powder film formed on a pin lowered a friction coefficient.

  • PDF

Sensitivity analysis of variable curvature friction pendulum isolator under near-fault ground motions

  • Shahbazi, Parisa;Taghikhany, Touraj
    • Smart Structures and Systems
    • /
    • v.20 no.1
    • /
    • pp.23-33
    • /
    • 2017
  • Variable Curvature Friction Pendulum (VCFP) bearing is one of the alternatives to control excessive induced responses of isolated structures subjected to near-fault ground motions. The curvature of sliding surface in this isolator is varying with displacement and its function is non-spherical. Selecting the most appropriate function for the sliding surface depends on the design objectives and ground motion characteristics. To date, few polynomial functions have been experimentally tested for VCFP however it needs comprehensive parametric study to find out which one provides the most effective behavior. Herein, seismic performance of the isolated structure mounted on VCFP is investigated with two different polynomial functions of the sliding surface (Order 4 and 6). By variation of the constants in these functions through changing design parameters, 120 cases of isolators are evaluated and the most proper function is explored to minimize floor acceleration and/or isolator displacement under different hazard levels. Beside representing the desire sliding surface with adaptive behavior, it was shown that the polynomial function with order 6 has least possible floor acceleration under seven near-field ground motions in different levels.

Impact and Wear Behavior of Side Plate of FRP Ship (FRP선박 외판재의 충격 및 마모 거동)

  • Kim, H.J.;Kim, J.D.;Koh, S.W.;Kim, Y.S.
    • Journal of Power System Engineering
    • /
    • v.13 no.6
    • /
    • pp.123-128
    • /
    • 2009
  • The effects of temperature and initial crack length on the impact fracture behavior for the side plate material of FRP ship were investigated. And the effects of the counterpart roughness and sliding distance on the volumetric wear of same material were investigated as well. Impact fracture toughness of GF/PE composites displayed maximum value when the temperature of specimen is room temperature and $50^{\circ}C$, and with decreasing the temperature of specimen, impact fracture toughness decreased. Impact fracture energy of GF/EP composites decreased with increasing the initial crack length of specimen, and this value decreased rapidly when the temperature of specimen is lowest, $-25^{\circ}C$. It is believed that sensitivity of notch on impact fracture energy were increased with decreasing the temperature of specimen. With increasing the sliding distance, the transition sliding distance, which displayed different aspect on the friction coefficient and the volumetric wear loss, were found out. Counterpart roughness had a big influence on the wear rate at running in period, however the effect of counterpart roughness became smaller with sliding speed increase in. Volumetric wear loss were increased with increasing the applied load and the counterpart roughness.

  • PDF

UAV Swarm Flight Control System Design Using Potential Functions and Sliding Mode Control (포텐셜 함수와 슬라이딩 모드 제어기법을 이용한 무인기 군집비행 제어기 설계)

  • Han, Ki-Hoon;Kim, You-Dan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.5
    • /
    • pp.448-454
    • /
    • 2008
  • This paper deals with a behavior based decentralized control strategy for UAV swarming utilizing the artificial potential functions and the sliding mode control technique. Individual interactions for swarming behavior are modeled using the artificial potential functions. The motion of individual UAV is directed toward the negative gradient of the combined potential. For tracking the reference trajectory of UAV swarming, a swarming center is considered as the object of control. The sliding-mode control technique is adopted to make the proposed swarm control strategy robust with respect to the system uncertainties and the varying mission environment. Numerical simulation is performed to verify the performance of the proposed controller.

Sliding Wear Behavior of Plasma Sprayed Zirconia Coatingagainst Silicon Carbide Ceramic Ball

  • Le Thuong Hien;Chae Young-Hun;Kim Seock Sam;Kim Bupmin;Yoon Sang-bo
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.66-74
    • /
    • 2004
  • The sliding wear behavior of $ZrO_2-22wt\%MgO\;(MZ)\;and\;ZrO_2-8wt\%Y_2O_3\;(YZ)$ deposited on a casting aluminum alloy with bond layer (NiCrCoAlY) by plasma spray against an SiC ball was investigated under dry test conditions at room temperature. At all load conditions, the wear mechanisms of the MZ and the YZ coatings were almost the same. The wear mechanisms involved the forming of a smooth film by material transferred on the sliding surface and pullout. The wear rate of the MZ coating was less than that of the YZ coating. With an increase normal load the wear rate of the studied coatings increased. The SEM was used to examine the sliding surfaces and elucidate likely wear mechanisms. The EDX analysis of the worn surface indicated that material transfer was occurred from the SiC ball to the disk. It was suggested that the material transfer played an important role in the wear performance.

  • PDF

Thermal Stability and Dry Sliding Wear Behavior of Ultra-Fine Grained 6061 Al Alloy Processed by the Accumulative Roll-Bonding Process (누적압연접합 공정에 의해 제조된 초미세립 6061 Al 합금의 열적 안정성과 건식 미끄럼 마멸 거동)

  • Kim Y.S.
    • Transactions of Materials Processing
    • /
    • v.14 no.1 s.73
    • /
    • pp.71-77
    • /
    • 2005
  • Thermal stability and dry sliding wear behavior of ultra-fine grained 6061 Al alloy fabricated by an accumulative roll-bonding (ARB) process have been investigated. After 4 ARB cycles, an ultra-fine grained microstructure of the 6061 Al alloy composed of grains with average size of 500nm, and separated mostly by high-angle boundaries was obtained. Though hardness and tensile strength of the ARB processed Al alloy increased with ARB cycles up to 4 cycles, the processed alloy exhibited decreased ductility and little strain hardening. Thermal stability of the ARB-processed microstructure was studied by annealing of the severely deformed alloy at $423K{\sim}573K$. The refined microstructure of the alloy remained stable up to 473K, and the peak aging treatment of the alloy at 450K for 8 hrs increased the thermal stability of the alloy. Sliding-wear rates of the alloy increased with the number of ARB cycles in spite of the increased hardness with the cycles. Wear mechanisms of the ultra-fine grained alloy were investigated by examining worn surfaces, wear debris, and cross-sections by a scanning electron microscopy (SEM).

Sliding Wear Behavior of Fe-Base Norem 02 Hardfacing Alloy in Pressurized Water (Fe계 Norem 02 경면처리 합금의 고압.수중 마모거동)

  • Lee, Kwon-Yeong;Oh, Young-Min;Lee, Min-Woo;Kim, Seon-Jin
    • Korean Journal of Materials Research
    • /
    • v.12 no.8
    • /
    • pp.608-612
    • /
    • 2002
  • The sliding wear behavior of an iron-base NOREM 02 hardfacing alloy was investigated in the temperature range of $25~250^{\circ}C$ under a contact stress of 103MPa (15ksi). With increasing temperature, the wear loss of Norem 02 in water increased slightly up to $180^{\circ}C$ at which Norem 02 showed the wear loss of 2.1mg. The wear resistance of Norem 02 resulted from the surface hardening due to the strain-induced phase transformation from austenite to $\alpha$'martensite during sliding wear. The wear loss of Norem 02 was smaller in water compared to air at same temperature because the water could be served as a sort of lubricant. The wear mode of NOREM 02 changed abruptly to severe adhesive wear at $190^{\circ}C$ and galling occurred above $200^{\circ}C$. It was caused that the strain- induced phase transformation took place below $180^{\circ}C$ while not above $190^{\circ}C$. Therefore, Norem 02 was considered to be inadequate at high temperature service area.

The Effect of Cementite Morphology and Matrix-ferrite Microstructure on the Sliding Wear Behavior in Spheroidized High Carbon Steel (구상화 열처리된 고탄소강의 미끄럼 마멸 거동에 미치는 시멘타이트 형상과 페라이트 기지조직의 영향)

  • Hur, H.L.;Gwon, H.;Gu, B.;Kim, Y.-S.
    • Transactions of Materials Processing
    • /
    • v.25 no.2
    • /
    • pp.96-101
    • /
    • 2016
  • The current study was conducted to elucidate the effect of cementite morphology and matrix-ferrite microstructure on sliding wear behavior in spheroidized high carbon (1wt. % C) steel. The high carbon steel was initially heat treated to obtain a full pearlite or a martensite microstructure before the spheroidization. The spheroidizing heat treatment was performed on the full pearlitic steel for 100 hours at 700℃ and tempering was performed on the martensitic steel for 3 hours at 650℃. A spheroidized cementite phase in a ferrite matrix was obtained for both the full pearlite and the martensite microstructures. Sliding wear tests were conducted using a pin-on-disk wear tester with the heat treated steel as the disk specimen. An alumina(Al2O3) ball was used as the pin counterpart during the test. After the spheroidizing heat treatment and the tempering, both pearlite and martensite exhibited similar microstructures of spheroidized cementite in a ferrite matrix. The spheroidized pearlite specimens had lower hardness than the tempered martensite; however, the wear resistance of the spheroidized pearlite was superior to that of the tempered martensite.

Sliding Wear Behavior of AISI 52100 Steel with Pearlitic and Bainitic Microstructures (미세조직 변화에 따른 AISI 52100 강의 미끄럼마멸 특성)

  • Yoon, N.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.20 no.7
    • /
    • pp.479-484
    • /
    • 2011
  • Dry sliding wear behavior of AISI 52100 steel that has a pearlite or bainite microstructure was characterized to explore the effect of microstructure on the wear of the steel. Isothermal heat treatments were employed to obtain the different microstructures. Pin-on-disk type wear tests of the steel disk were performed at loads of 25~125N in air against an alumina ball. Sliding speed and wear distance used were 0.1m/sec and 300m, respectively. Worn surfaces, wear debris and cross-sections of the worn surfaces were examined with SEM to investigate the wear mechanism of the steel. Hardness of the steel was also evaluated. Wear rate of the steel was correlated with the hardness and the microstructure. On the whole, wear resistance increased with an increase in hardness. However, the pearlite microstructure showed superior wear resistance as compared to the bainite microstructure with a similar hardness. The effect of the microstructure on the wear rate was attributed to the morphological differences of the carbide in the microstructure, which was found to have a significant effect on strain hardening during the wear.

Frictional behaviour of Oxide Films Produced on S45C Steel by Plasma Nitrocarburizing and Post Plasma Oxidation Treatment (플라즈마 질탄화 & 후산화처리로 S45C강에 형성된 산화막의 마찰거동)

  • Jeong, Kwang-Ho;Lee, In-Sup
    • Korean Journal of Materials Research
    • /
    • v.16 no.12
    • /
    • pp.766-770
    • /
    • 2006
  • The frictional behavior of oxide films on top of the plasma nitrocarburized compound layers was investigated in terms of post-oxidation treatment temperatures. The post-oxidation treatment at both temperatures($400^{\circ}C,\;500^{\circ}C$) produced magnetite($Fe_3O_4$) films which led to a significant enhancement in corrosion resistance. However, this process did not result in any improvement in frictional behavior of the nitrocarburized surface. The wear mechanisms were governed predominantly by the abrasive action of the slider on the surface irrespective of the counterface material(SiC and Bearing steel). When the specimen was sliding against a SiC counterface, the oxide films were destroyed during the early stage of the sliding process and the wear debris of the oxide film at the sliding track had a great influence on the friction coefficient. On the other hand, when sliding against a bearing steel counterface, the slider was mainly worn out due to the much higher hardness of the surface hardened layer. The fluctuation of the friction coefficient of $400^{\circ}C$-oxidized/ nitrocarburized specimen is much severer than that of $500^{\circ}C$ specimen, due to the less amount of wear debris.