• 제목/요약/키워드: Sliding Wear Resistance

검색결과 186건 처리시간 0.022초

용탕단조법에 의한 AC8A/$Al_2O_3$ 복합재료의 기계적 성질에 관한 연구 (A Study on the Mechanical Properties of AC8A/$Al_2O_3$ Composites.)

  • 김기배;김경민;조순형;윤의박
    • 한국주조공학회지
    • /
    • 제11권6호
    • /
    • pp.475-481
    • /
    • 1991
  • In this study the fabrication technology and mechanical properties of AC8A/$Al_2O_3$ Composites by squeeze casting process were investigated to develope for application as the piston materials that require good friction, wear resistance, and thermal stability. AC8A/$Al_2O_3$ composistes without a porosity and the break of preform were fabricated at the melt temperature of $740^{\circ}C$, the preform temperature of $500^{\circ}C$, and mold temperature of $400^{\circ}C$ under the applied pressure of $1200kg/cm^2$ as the results of the observation of microstructures. As the results of this study, the tensile strength of AC8A/$Al_2O_3$ composites was not increased linearly with $Al_2O_3$ volume fraction and so it seemed not to agree with the rule of mixture, which had been used often in metal matrix composite. Also the tensile strength after thermal fatigue test was little different from that before the test. Consequently it was thought that AC8A/$Al_2O_3$ composites fabricated under our experimental conditions had a good thermal stability and subsequently a good interface bonding. Wear rate(i.e., volume loss per unit sliding distance) of AC8A/$Al_2O_3$ composites was decreased with $Al_2O_3$ volume fraction and the sliding speed at both room temperature and $250^{\circ}C$ and so there was a good correlation between wear rate and hardness. Also the wear rate of AC/8A20% $Al_2O_3$ composities was obtained the value of $1.65cm^3/cm$ at sliding speed of 1.14m/sec as compared with about $3.0\;{\times}10^{-8}cm^3/cm$ hyereutectie Al-Si alloy(Al-16%Si-2%Cu-1%Fe-1%Ni), which applied presently for piston materials. The wear behavior of $Al_2O_3$ composites was observed to a type of abrasive wear by the SEM view of wear surface.

  • PDF

내저온열화 특성을 갖는 지르코니아/알루미나 복합세라믹의 마멸평가

  • 김환;이권용;김대준;이명현;서원선
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2003년도 학술대회지
    • /
    • pp.91-94
    • /
    • 2003
  • Ceramic femoral heads in the total hip replacement have been developed to reduce the polyethylene liner wear. Alumina and zirconia (3Y-TZP) are using in clinical application worldwide and there are many good test reports. However, alumina has a risk of catastrophic failure, and zirconia has the low temperature degradation in spite of enhanced fracture toughness. Recently, novel zirconia/alumina composite having low temperature degradation-free character and high fracture tough . was developed and it leads the lower wear 3f polyethylene than alumina and zirconia. In the present study, in order to optimise the microstructure of low temperature degradation (LTD)-free zirconia/alumina composite for the best wear resistance of polyethylene, various compositions of (LTD)-free zirconia/alumina composites were fabricated, and the sliding wear of UHMWPE against these novel composites were examined and compared with that against alumina and zirconia ceramics used for total hip joint heads.

  • PDF

고크롬 주철의 기계적 특성에 미치는 열처리 영향 (The Effects of Heat-treatment on the Mechanical Properties of High Chromium Cast Irons)

  • 김석원;김기곤;박진성;김동건;윤영갑
    • 한국주조공학회지
    • /
    • 제25권1호
    • /
    • pp.23-29
    • /
    • 2005
  • Mechanical characteristics of Hi-Cr cast irons containing 16.8%Cr and 3.0%C were studied with various heat treatments. After as-cast Y-block ingots were annealed fully, the ingots were machined into cylinderical specimens with the size of 9mm in diameter and 20mm in length in order to investigate the effect of heat-treatments on mechanical characteristics of high Cr cast irons. All specimens were heat-treated by quenching- tempering, austempering and cyclic heat at the various temperatures(950, 1000, 1050 and $1100^{\circ}C$) respectively. The wear amount was measured for each heat-treated specimens against the counterpart of a hardened SKD11 steel at the following conditions; wearing velocity: 0.7 m/s, load: 100N and sliding distance: 70 km. After as-cast specimens were annealed, fine $M_{3}C$ carbides were formed, which affected the hardness and the wear resistance of Hi-Cr specimens. High hardness and good wear resistance were appeared on the specimens treated at 950 and $1000^{\circ}C$ and the austempered specimens show excellent wear resistance as well as high hardness.

철도차량용 금속계 소결마찰재의 조성에 따른 트라이볼로지 특성 (Effects of Composition of Metallic Friction Materials on Tribological Characteristics on Sintered Metallic Brake Pads and Low-Alloy Heat-Resistance Steel for Trains)

  • 양용준;이희성
    • Tribology and Lubricants
    • /
    • 제30권6호
    • /
    • pp.330-336
    • /
    • 2014
  • Sintered metallic brake pads and low alloy heat resistance steel disks are applied to mechanical brake systems in high energy moving machines that are associated with recently developed 200km/h trains. This has led to the speed-up of conventional urban rapid transit. In this study, we use a lab-scale dynamometer to investigate the effects of the composition of friction materials on the tribological characteristics of sintered metallic brake pads and low alloy heat resistance steel under dry sliding conditions. We conduct test under a continuous pressure of 5.5 MPa at various speeds. To determine the optimal composition of friction materials for 200 km/h train, we test and the evaluate frictional characteristics such as friction coefficients, friction stability, wear rate, and the temperature of friction material, which depend on the relative composition of the Cu-Sn and Fe components. The results clearly demonstrate that the average friction coefficient is lower for all speed conditions, when a large quantity of iron power is added. The specimen of 25 wt% iron powder that was added decreased the wear of the friction materials and the roughness of the disc surface. However when 35 wt% iron powder was added, the disc roughness and the wear rate of friction materials increased By increasing the amount of iron powder, the surface roughness, and temperature of the friction materials increased, so the average friction coefficients decreased. An oxidation layer of $Fe_2O_3$ was formed on both friction surfaces.

플라즈마 코팅한 주조용 알루미늄합금의 마찰 및 마멸특성 (Friction and Wear Characteristics of Plasma Coated Surface of Casting Aluminum Alloy)

  • 채영훈;임정일;박준목;김석삼
    • 대한기계학회논문집A
    • /
    • 제21권5호
    • /
    • pp.791-799
    • /
    • 1997
  • The wear characteristics and wear mechanisms of plasma sprayed Al/sub 2/ O/sub 3/-40%TiO/sub 2/ and Cr/sub 2/O/sub 3/ deposited on casting aluminum alloy(AC4C) were investigated. Specimens were processed for various coating thicknesses. Ball on disk type wear tester was used for wear test. The scratch test on plasma sprayed coating surface showed that critical load to break the coating layer was greater than 40 N. The critical load increase with the increase of coating thickness of specimens. The friction coefficient of Cr/sub 2/O/sub 3/ coating layer was less than that of Al/sub 2/O/sub 3/-40%TiO/sub 2/ coating layer. The wear resistance of Cr/sub 2/O/sub 3/ coating layer was greater than that of Al/sub 2/O/sub 3/-40%TiO/sub 2/ coating layer. Microscopic observation of worn surfaces was made by SEM. SEM observation showed that the main mechanism of wear for Al/sub 2/O/sub 3/-40%TiO/sub 2/ coating layer was abrasive wear under 50 N. For the case of Al/sub 2/O/sub 3/-40%TiO/sub 2/ coating layer, as the surface cracks perpendicular to sliding direction propagated, the wear debris was generated in wear track. However, the main mechanism of wear for Cr/sub 2/O/sub 3/ coating layer was brittle fracture under 150 N.

플라즈마분체 오버레이법에 의한 알루미늄합금 표면의 경화특성에 관한 연구( II ) -후막 표면 합금화층의 경화특성과 내마모성- (Hardening Characteristics of Aluminum Alloy Surface by PTA Overlaying with Metal Powders (II) -Hardening charactersteristics and wear resistance of thicker surface alloyed layer-)

  • 이규천;;강원석;이영호
    • Journal of Welding and Joining
    • /
    • 제12권4호
    • /
    • pp.102-109
    • /
    • 1994
  • The thick and hard alloyed layer was formed on the surface of Aluminum Cast Alloy(AC2B) by PTA overlaying process with Cr, Cu and Ni metal powders under the condition of overlaying current 150A, overlaying speed 150mm/min and different powder feeding rate 5-20g/min. The characteristics of hardening and were resistance of alloyed layer have been investigated in relation to microstructure of alloyed layer. As a result, it was made clear that Cu powder was the most superier one in three metal powders used due to an uniform hardness distribution of Hv 250-350, good wear resistance and freedom from cracking in alloyed layer of which microstructure consisted of hypereutectic. On the contrary, irregular hardness distribution was usually obtained in Cr or Ni alloyed layers of which hardness was increased as Cr or Ni contents and reached to maximum hardness of about Hv 400-850 at about 60wt% Cr or 40wt% Ni in alloyed layer. However the cracking occurred in these alloyed layers with higher hardness than Hv 250-300 at more than 20-25wt% of Cr or Ni contents in alloyed layer. Wear rate of alloyed layer was decreased to 1/10 in Cu alloyed layer and 1/5 or 1/3 in Cr or Ni alloyed layer with same hardness of about Hv 300 in comparison with that of base metal at higher sliding speed.

  • PDF

Proposed surface modeling for slip resistance of the shoe-floor interface

  • Kim, In-Ju
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 1995년도 춘계공동학술대회논문집; 전남대학교; 28-29 Apr. 1995
    • /
    • pp.515-528
    • /
    • 1995
  • Slips and falls are the major causes of the pedestrian injuries in the industry and the general community throughout the world. With the awareness of these problems, the friction coefficients of the interface between floorings and footwear have been measured for the evaluation of slip resistant properties. During this measurement process, the surface texture has been shown to be substantially effective to the friction mechanism between shoe heels and floor surfaces under various types of walking environment. Roughness, either of the floor surface or shoe heels, provides the necessary drainage spaces. This roughness can be designed into the shoe heel but this is inadequate in some cases, especially a wear. Therefore, it is essential that the proper roughness for the floor surface coverings should be provided. The phenomena that observed at the interface between a sliding elastomer and a rigid contaminated floor surface are very diverse and combined mechanisms. Besides, the real surface geometry is quite complicate and the characteristics of both mating surfaces are continuously changing in the process of running-in so that a finite number of surface parameters can not provide a proper description of the complex and peculiar shoe - floor contact sliding mechanism. It is hypothesised that the interface topography changes are mainly occurred in the shoe heel surfaces, because the general property of the shoe is soft in the face of hardness compared with the floor materials This point can be idealized as sliding of a soft shoe heel over an array of wedge-shaped hard asperities of floor surface. Therefore, it is considered that a modelling for shoe - floor contact sliding mechanism is mainly depended upon the surface topography of the floor counterforce. With the model development, several surface parameters were measured and tested to choose the best describing surface parameters. As the result, the asperity peak density (APD) of the floor surface was developed as one of the best describing parameters to explain the ambiguous shoe - floor interface friction mechanism. It is concluded that the floor surface should be continuously monitored with the suitable surface parameters and kept the proper level of roughness to maintain the footwear slip resistance. This result can be applied to the initial stage of design for the floor coverings.

  • PDF

RF-PECVD로 증착된 DLC 박막의 온도 변화에 따른 트라이볼로지 특성 (The Influence of the Temperature Increase on the Tribological Behavior of DLC Films by RF-PECVD)

  • 이영제;조용경;신윤하
    • Tribology and Lubricants
    • /
    • 제22권3호
    • /
    • pp.127-130
    • /
    • 2006
  • DLC (Diamond Like Carbon) films show very desirable surface interactions with high hardness, low friction coefficient, and good wear-resistance properties. The friction behavior of hydrogenated DLC film is dependent on tribological environment, especially surrounding temperature. In this work, the tribological behaviors of DLC (Diamond-like carbon) films, prepared by the radio frequency plasma enhanced chemical vapor deposition (RF-PECVD) method, were studied in elevated temperatures. The ball-on-disk tests with DLC films on steel specimens were conducted at a sliding speed of 60 rpm, a load of 10N, and surrounding various temperatures of $25^{\circ}C,\;40^{\circ}C,\;55^{\circ}C\;and\;75^{\circ}C$. The results show considerable dependency of DLC tribological parameters on temperature. The friction coefficient decreased as the surrounding temperature increased. After tests the wear tracks of hydrogenated DLC film were analyzed by optical microscope, scanning electron spectroscopy (SEM) and Raman spectroscopy. The surface roughness and 3-D images of wear track were also obtained by an atomic force microscope (AFM).

초 미세조직 Al81Si19 합금분말 압출재의 미세조직과 기계적 성질에 미치는 압출온도의 영향 (The Effect of Extrusion Temperatures on Microstructures and Mechanical Properties of Ultra-Fine Structured and Extruded Al81Si19 Alloys)

  • 이태행;홍순직
    • 한국분말재료학회지
    • /
    • 제10권5호
    • /
    • pp.325-332
    • /
    • 2003
  • The effect of extrusion temperature on the microstructure and mechanical properties was studied in gas atomized TEX>$Al_{81}Si_{19}$ alloy powders and their extruded bars using SEM, tensile testing and wear testing. The Si particle size of He-gas atomized powder was about 200-800 nm. Each microstructure of the extruded bars with extrusion temperature (400, 450 and 50$0^{\circ}C$) showed a homogeneous distribution of primary Si and eutectic Si particles embedded in the Al matrix and the particle size varied from 0.1 to 5.5 ${\mu}m$. With increasing extrusion temperature from 40$0^{\circ}C$ to 50$0^{\circ}C$, the ultimate tensile strength (UTS) decreased from 282 to 236 ㎫ at 300 K and the specific wear increased at all sliding speeds due to the coarse microstructure. The fracture behavior of failure in tension testing and wear testing was also studied. The UTS of extrudate at 40$0^{\circ}C$ higher than that of 50$0^{\circ}C$ because more fine Si particles in Al matrix of extrudate at 40$0^{\circ}C$ prevented crack to propagate.

Pulse Electrodeposition and Characterization of Ni-Si3N4 Composite Coatings

  • Gyawali, Gobinda;Woo, Dong-Jin;Lee, Soo-Wohn
    • 한국표면공학회지
    • /
    • 제43권5호
    • /
    • pp.224-229
    • /
    • 2010
  • $Ni-Si_3N_4$ nano-composite coatings were prepared by pulse current (PC) electrodeposition and direct current (DC) electrodeposition techniques. The micro-structure of the coatings was characterized by scanning electron microscopy (SEM), vickers microhardness, X-Ray Diffraction (XRD) and wear-friction tests. The results showed that the micro-structure and wear performance of the coatings were affected by the electrodeposition techniques. Pulse current electrodeposited $Ni-Si_3N_4$ composite coatings exhibited higher microhardness, smooth surface, and better wear resistance properties as compared to coatings prepared under DC condition. The $Ni-Si_3N_4$ composite coatings prepared at 50 Hz pulse frequency with 10% duty cycles has shown higher codeposition of nano-particles. Consequently, increased microhardness and less plastic deformations occurred in coatings during sliding wear test. The XRD patterns revealed that the increased pulse frequencies changed the preferred (100) nickel crystallite orientations into mixed (111) and (100) orientations.