• Title/Summary/Keyword: Sliding Speed

Search Result 699, Processing Time 0.033 seconds

Sensorless Sliding Mode Control of an Induction Motor using Adaptive Speed Observer (적응 속도 관측기를 사용한 유도전동기의 센서리스 슬라이딩 모드 제어)

  • Jie, Min-Seok;Kim, Chin-Su;Lee, Jae-Yong;Lee, Kang-Woong
    • Journal of Advanced Navigation Technology
    • /
    • v.10 no.3
    • /
    • pp.191-197
    • /
    • 2006
  • In the paper propose a sensorless sliding mode control method of an induction motor using an adaptive speed control. The control objective is apply to adaptive speed observer instead of a encoder and to remove errors using the sliding mode current controller by parameters variation and disturbances that include the current controller. A stability of the sliding mode current controller and the adaptive speed observer using a design controller is guaranteed by the Lyapunov stability criterion. The performance of the proposed control system is demonstrated by simulation using the matlab silmulink and experimental results using induction motor show that the proposed method can apply an induction motor control.

  • PDF

Slip/Slide Detection Method for the Railway Vehicles using Rotary Type Speed Sensor (회전형 속도검출기를 사용한 철도차량에서 공전, 활주의 검출방법)

  • Lee, Eul-Jae;Kim, Young-Seok;Yoon, Yong-Ki;Lee, Jae-Ho;Ryu, Sang-Hwan;Jeong, Rak-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2000.11b
    • /
    • pp.405-407
    • /
    • 2000
  • The most generally implemented method to detect the ground speed of the railway vehicles is to use the rotary type speed sensor attached to wheel axle. The Slip or sliding phenomenon on the railway vehicles occurs frequently caused by the weak viscosity of the wheel. Thus, precisely to control the car, the slip/sliding detection system is required. In this paper we proposed for the speed data management system, which uses rotary type speed sensor. Proposed speed management system can detect the slip/sliding with wheel axle as well as correct the generated speed error during in error time, to provide accurate speed and precise location data. The effectiveness for adapting to the railway system is clarified by the computer simulation.

  • PDF

The Speed and Position Sensorless Control of PMSM using the Sliding Mode Observer with the Estimator of Stator Resistance (고정자 저항 추정기를 갖는 슬라이딩 모드 관측기를 이용한 영구자석 동기전동기의 속도 및 위치 센서리스제어)

  • 한윤석;최정수;김영석
    • Proceedings of the KIPE Conference
    • /
    • 1998.11a
    • /
    • pp.23-27
    • /
    • 1998
  • This paper presents a new speed and position sensorless control method of permanent magnet synchronous motors based on the sliding mode observer. The sliding mode observer structure and its design method are discussed. Also, Lyapunov functions ar chosen for determining the adaptive law for the speed and the stator resistance estimator. The effectiveness of the proposed observer is confirmed by the computer simulation.

  • PDF

Design of a Sliding Mode Speed Controller for the BLDC Motor Using the Space Vector Modulation Technique (공간벡터 변조법을 적용한 BLDC 전동기에 대한 슬라이딩 모드 속도 제어기 설계)

  • 최중경;박승엽;황정원
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.1125-1128
    • /
    • 1999
  • This paper presents a speed controller for the Sinusoidal type BLDC motor using the sliding mode. Since the sliding mode control has some practical limitations such as the chattering phenomenon and reaching phase problems, the technique of overcoming these limitations is proposed in a practical realization. This proposed speed control technique is composed of an smooth integral variable structure control(IVSC), and chattering prediction method.

  • PDF

Speed Estimation of Induction Motor Using Binary Observer (이원관측기를 이용한 유도전동기의 속도추정)

  • 김상욱;나재두;김영석
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.171-176
    • /
    • 1997
  • This paper presents a design method of the continuous inertial binary observer which includes the rotor flux and speed estimations. The sliding observer based on the variable structure theory ensures the robustness of disturbance and is applied for the method to keep an insensitivity for the variations of parameter. Sliding observer, however, has a high-frequency chattering deteriorating the state estimation performance. To reduce the chattering on the sliding surface in sliding observer and improve the estimation performance, binary observer scheme which has main advantages such as the absence of high-frequency chattering and the finite gains is applied in this paper. Computer simulation results show the effectiveness of binary observer proposed here for the induction motor drives.

  • PDF

Sliding Mode Control Scheme for an Induction Servomotor Drive

  • Hong, Jeng-Pyo;Hong, Soon-Ill
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.2
    • /
    • pp.239-246
    • /
    • 2006
  • This paper describes the scheme of sliding mode control (SMC) to adopt the conventional slip frequency vector drives. The purpose of sliding mode control is to achieve an accurate, robustness of response for ac servomotor speed control. A sliding mode control design method is proposed for a speed control of an induction servomotor. The control law is composed of the variable structure component and the suppressed coefficients to suppress load disturbance and variation of external parameters. The proposed control scheme is simulated by the computer which is installed in an ideal ac servomotor. The simulation results show that the proposed design method has robustness and accuracy in the speed response by adjusting the suppressed coefficients for load disturbance and the motor mechanical parameter variation.

Speed Control of Linear Induction Motor using Sliding Mode Controller Considering the End Effects

  • Boucheta, A.;Bousserhane, I.K.;Hazzab, A.;Sicard, P.;Fellah, M.K.
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.34-45
    • /
    • 2012
  • In the present paper, the mover speed control of a linear induction motor (LIM) using a sliding mode control design is proposed, considering the end effects. First, the indirect field-oriented control LIM is derived, considering the end effects. The sliding mode control design is then investigated to achieve speed- and flux-tracking under load thrust force disturbance. The numerical simulation results of the proposed scheme present good performances in comparison to that of the classical sliding mode control.

Motion Characteristic Evaluation of Sliding Cover for High Speed Type Machine (Sliding cover의 고속 운동 특성 평가)

  • 강재훈;송준엽;박화영;이승우;황주호;이현용;이찬홍;이후상
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.446-449
    • /
    • 2002
  • Recently, advanced manufacturing system with high speed and intelligent have been developed for the betterment of machining ability. In this case, reliability prediction work with motion characteristic evaluation of sliding cover has also important roll from design procedure to manufacturing and assembly process. Accordingly in this study, H/W test -bed system for reliability evaluation of sliding cover has been developed to obtain proper reference data for design of new model, and also prevention trouble, quality and life cycle improvement extremely for advanced mother machinary.

  • PDF

Design of SPMSM Robust Speed Servo Controller Switching PD and Sliding Mode Control Strategies (PD-슬라이딩 모드 제어의 절환을 통한 강인한 SPMSM 속도 제어기 설계)

  • Son, Ju-Beom;Seo, Young-Soo;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.3
    • /
    • pp.249-255
    • /
    • 2010
  • The paper proposes a new type of robust speed control strategy for permanent magnet synchronous motor by using PD-sliding mode hybrid control. The PD control has a good performance in the transient region while the sliding mode controller provides the robustness against system uncertainties. Taking advantages of the two control strategies, the proposed control method utilizes the PD control in the approaching region to the sliding surface and the sliding mode control near at the sliding surfaces. The chattering problem of the sliding mode controller is eliminated by applying the saturation function for the switching function of the sliding mode control. The stability of the sliding mode control is verified by using Lyapunov function with the proper selection of variable gains. It is shown that with this simple switching algorithm, stability of the overall hybrid control system is ensured. Through the simulations, the PD-sliding mode algorithm is shown to have a good performance in the transient response as well as being robust against disturbances. The robustness of the PD-sliding mode algorithm is further demonstrated against various external disturbances in the real experiments of SPMSM motor control.

Super-Twisting Sliding Mode Control Design for Cascaded Control System of PMSG Wind Turbine

  • Phan, Dinh Hieu;Huang, ShouDao
    • Journal of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.1358-1366
    • /
    • 2015
  • This study focuses on an advanced second-order sliding mode control strategy for a variable speed wind turbine based on a permanent magnet synchronous generator to maximize wind power extraction while simultaneously reducing the mechanical stress effect. The control design based on a modified version of the super-twisting algorithm with variable gains can be applied to the cascaded system scheme comprising the current control loop and speed control loop. The proposed control inheriting the well-known robustness of the sliding technique successfully deals with the problems of essential nonlinearity of wind turbine systems, the effects of disturbance regarding variation on the parameters, and the random nature of wind speed. In addition, the advantages of the adaptive gains and the smoothness of the control action strongly reduce the chatter signals of wind turbine systems. Finally, with comparison with the traditional super-twisting algorithm, the performance of the system is verified through simulation results under wind speed turbulence and parameter variations.