• Title/Summary/Keyword: Sliding Mode Control (SMC)

Search Result 199, Processing Time 0.051 seconds

Robust Sliding Mode Controller Design for the Line-of-Sight Stabilization

  • Kim, Moon-Sik;Yun, Jung-Joo;Yoo, Gi-Sung;Lee, Min-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.614-619
    • /
    • 2004
  • The line-of-sight (LOS) stabilization system is a precision electro-mechanical gimbals assembly for rejecting vibration to isolate the load from its environment and point toward the target in a desired direction. This paper describes the design of gimbals system to reject the disturbance and to improve stabilization. To generate movement commands for the actuators in the stabilization system, the control system uses a sensor of angular rotation. The controller is a DSP with transducer and actuator interfaces. Unknown parameters of the gimbals are estimated using the signal compression method. The cross-correlation coefficient between the impulse response from the assumed model and the one from model of the gimbals is used to obtain the better estimation. And SMCPE (sliding mode control with perturbation estimation) is used to control the gimbals. SMCPE provides robustness of the control against the modeling deficiencies and unknown disturbances. In order to compare the performance of SMCPE with the classical SMC, a sample test result is presented.

  • PDF

Sliding Mode Control of a Cargo System Model Using ER Valve-Actuators (ER 밸브 작동기를 이용한 하역시스템 모델의 슬라이딩모드 제어)

  • Choe, Seung-Bok;Kim, Hyeong-Seok;Jeong, Dal-Do;Seong, Geum-Gil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.11 s.170
    • /
    • pp.1982-1992
    • /
    • 1999
  • This paper presents a novel concept of cargo handling system adapted for a sea port subjected to severe time-varying tide. The proposed system can perform loading or unloading by using a sort of hydraulic elevator associated with real-time position control. In order to achieve a proof-of-concept, a small-sized laboratory model of the cargo handling system is designed and built. The model consists of three principal components container palette transfer (CPT) car, platform with lifting columns, and cargo ship. The platform activated by electro-rheological (ER) valve-cylinders is actively controlled to track the position of the cargo ship subjected to be varied due to the time-varying tide and wave motion. Following the derivation of the dynamic model for the platform and cargo ship motions, an appropriate control scheme is formulated and implemented. The location of the CPT car is sensed by a set of photoelectric switches and controlled via sequence controller. On the other hand, a sliding mode controller (SMC) is adopted as the position controller for the platform. Both simulated and measured control results are presented to demonstrate the effectiveness of the proposed cargo system.

Design of Elliptical Sliding Surface Guaranteeing Finite Time Convergence (유한 시간 수렴을 보장하는 타원형 슬라이딩 모드 제어기의 설계)

  • Jo, Young-Hun;Lee, Yong-Hwa;Park, Kang-Bak
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.4
    • /
    • pp.295-298
    • /
    • 2011
  • Almost all of control methods proposed so far have been designed such that the overall system guarantees asymptotic stability. It implies that the output converges to zero but not reaches to zero in a finite time. In many actual cases, however, it is preferable to design the controller such that the output gets to zero in a finite time. In this paper, we proposed a novel elliptical sliding surface. To show the effectiveness of the proposed method, experimental results are given.

A Study on the $H_{\infty}$ Controller of the Novel Sliding Mode - State Space Approach (새로운 슬라이딩 모드를 이용한 $H_{\infty}$ 제어기의 설계 - 상태공간 접근방법)

  • Kim, Min-Chan;Park, Seung-Kyu;Kwak, Gun-Pyong
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.915-917
    • /
    • 1999
  • In this paper, a novel sliding surface is proposed by introducing a virtual state. This sliding surface has nominal dynamics of an original system and makes it possible that the Sliding Mode Control(SMC) technique is combined with the $H_{\infty}$ controller. Its design is based on the augument system whose dynamics have one higher order than that of the original system. The reaching phase is removed by setting an initial virtual state which makes the initial switching function equal to zero.

  • PDF

Control of Active Engine Mount System Featuring MR Fluid and Piezostack via HILS (MR 유체와 압전스택을 이용한 능동 엔진마운트 시스템의 HILS 제어)

  • Lee, Dong-Young;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.351-356
    • /
    • 2009
  • This paper presents vibration control performance of active engine mount system installed with the magneto-rheological (MR) mount and the piezostack mount. The performance is evaluated via hardware-in-the-loop-simulation(HILS) method. As a first step, six degrees-of freedom dynamic model of an in-line four-cylinder engine which has three points mounting system is derived by considering the dynamic behaviors of MR mount and piezostack mount. As a second step, sliding mode controller(SMC) is synthesized to actively control the imposed vibration In order to demonstrate the effectiveness of the proposed active engine mount, vibration control performances are evaluated under various engine operating speeds (wide frequency range) using HILS method and presented in time and frequency domain.

  • PDF

Self-Recurrent Neural Network Based Sliding Mode Control of Biped Robot (이족 로봇을 위한 자기 회귀 신경 회로망 기반 슬라이딩 모드 제어)

  • Lee, Sin-Ho;Park, Jin-Bae;Choi, Yoon-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1860-1861
    • /
    • 2006
  • In this paper, we design a robust controller of biped robot system with uncertainties, using recurrent neural network. In our proposed control system, we use the self-recurrent wavelet neural network (SRWNN). The SRWNN makes up for the weak points in wavelet neural network(WNN). While the WNN has fast convergence ability, it dose not have a memory. So the WNN cannot confront unexpected change of the system. However, the SRWNN, having advantage of WNN such as fast convergence, can easily encounter the unexpected change of the system. For stable walking control of biped robot, we use sliding mode control (SMC). Here, uncertainties are predicted by SRWNN. The weights of SRWNN are trained by adaptive laws based on Lyapunov stability theorem. Finally, we carry out computer simulations with a biped robot model to verify the effectiveness of the proposed control system,.

  • PDF

A Backstepping Design with Sliding Mode Control for Uncertain Discrete System

  • Park, Seung-Kyu;Kim, Min-Chan;Kim, Tae-Won;Ahn, Ho-Kyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.63.6-63
    • /
    • 2002
  • The technique of backstepping have can avoid cancellations of useful nonlinearities. It is widely used in nonlinear adaptive control. But it is difficult to use this technique for uncertain nonlinear systems. Sliding mode control has robustness and application with feedback linearization. This paper shows that the robustness can be used for back stopping technique to solve the uncertainty problem and to improve the scalar design problem using Control Lyapunov function which is the motivation of back stepping technique with recursive design for high-order systems. In the respect of SMC, the result of this paper does not need to satisfy the matching condition.

  • PDF

Adaptive Sliding Mode Control Based on Fuzzy Control Structure (퍼지제어구조 기반 적응 슬라이딩 제어)

  • 유병국;함운철
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.781-787
    • /
    • 1999
  • In this note, we propose two methods of adaptive sliding mode control(SMC) schemes in which fuzzy systems(FS) are utilized to approximate the unknown system functions. In the first method, a FS is utilized to approximate the unknown function f of the nonlinear system $\chi$$^{(n)}$$\chi$=f(equation omitted), t)+b(equation omitted), t)u and the robust adaptive law is proposed to reduce the approximation errors between the true nonlinear function and fuzzy approximator, FS. In the second method, two FSs are utilized to approximate f and b, respectively. The robust control law is also designed. The stabilities of proposed control schemes are proved.

  • PDF

Control of Active Engine Mount System Featuring MR Fluid and Piezostack via HILS (MR 유체와 압전스택을 이용한 능동 엔진마운트 시스템의 HILS 제어)

  • Lee, Dong-Young;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.2
    • /
    • pp.122-128
    • /
    • 2010
  • This paper presents vibration control performance of active engine mount system installed with the magneto-rheological(MR) mount and the piezostack mount. The performance is evaluated via hardware-in-the-loop-simulation(HILS) method. As a first step, six degrees-of freedom dynamic model of an in-line four-cylinder engine which has three point mounting system is derived by considering the dynamic behaviors of MR mount and piezostack mount. As a second step, sliding mode controller(SMC) is synthesized to actively control the imposed vibration. In order to demonstrate the effectiveness of the proposed active engine mount, vibration control performances are evaluated under various engine operating speeds(wide frequency range) using HILS method and presented in time and frequency domain.

Sliding Mode Control with Target Variation Rate of Lyapunov Function for Seismic-Excited Structures (Lyapunov 함수의 목표 변화율을 이용한 가진된 건물의 슬라이딩 모드 제어)

  • 이상현;정진욱;민경원;강경수
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.3
    • /
    • pp.73-78
    • /
    • 2001
  • This paper presents sliding mode control(SMC) method using target variation rate of Lyapunov Function. SMC keeps the response of structure in sliding surface where structure is stable. It can design both linear controller and bang-bang controller. Linear control of previous research, however, can not make most of the performance of controller, because it is designed to satisfy the condition that the variation rate of Lyapunov function is minus. Also, in case of bang-bang controller, unnecessary large control force is generated. Presented method can utilize the capacity of controller efficiently by prescribing the target variation rate of Lyapunov function. Numerical simulation results indicate that the presented control methods can reduce the peak response larger than linear control, and it has control performance equivalent to bang-bang control.

  • PDF