• Title/Summary/Keyword: Sliding/impact wear

Search Result 19, Processing Time 0.028 seconds

Analysis of sliding/Impacting Wear in T7be to Convex Spring Contact and Relevant Contact Problem

  • Kim, Hyung-Kyu;Lee, Young-Ho;Heo, Sung-Pil;Jung, Youn-Ho;Ha, Jae-Wook;Kim, Seock-Sam;Jeon, Kyeong-Lak
    • KSTLE International Journal
    • /
    • v.3 no.1
    • /
    • pp.60-67
    • /
    • 2002
  • Wear on the tube-to-spring contact is investigated experimentally, The vibration of the tube causes the wear while the springs support it As for the supporting conditions, the contacting normal farce of 5 N,0 N and the gap of 0.1 mm are applied. The gap condition is for considering the influence of simultaneous impacting and sliding on wear. The wear volume and depth decreases in the order of the 5 N,0 N and the gap conditions. This is explained from the contact geometry of the spring, which is convex of smooth contour, The contact shear force is regarded smaller in the case of the gap existence compared with the other conditions. The wear mechanism is considered from SEM observation of the worn surface. The variation of the normal contact traction is analysed using the finite element analysis to estimate the slip displacement range on the contact with consulting the fretting map.

The change of surface properties of nitrogen implanted chromium steel in high temperature environment (고온 이온주입된 크롬강의 표면특성변화)

  • Lee, Chan-Young;Kim, Bum-Suk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.403-403
    • /
    • 2008
  • This article reports changes in the mechanical properties of chromium steel after nitrogen implantation at high temperature. The samples are implanted with 120keV N-ion at doses ranging from $1\times1080$ to $4\times1080ions/cm^2$ and at substrate temperature ranging from 25 to $400^{\circ}C$. Nano-hardness and AES(Auger electrons spectroscopy) were measured from nitrogen ion implanted layer. The sliding wear and impact wear properties of the implanted samples were also measured. The results revealed that the hardness and mechanical properties of ion implanted samples depend strongly on the ion doses and implantation temperature. The hardness of the nitrogen implanted sample with 120keV, $4\times10^{18}ions/cm^2$, $335^{\circ}C$ was measured to be approximately 20 GPa, which is approximately 5 times higher than that of un-implanted sample (H=3.8 GPa). Also, the sliding wear and impact wear properties of nitrogen implanted samples were greatly improved. Detailed experiment results will be presented.

  • PDF

A Method to Predict Wear Depth Using Inversely Calculated Wear Constants from Known Wear Depth and Time (측정된 마모 깊이와 시간에 의해 역으로 계산된 마모상수를 이용한 마모 깊이 예측)

  • Lee, Yong-Son;Kim, Tae-Soon;Park, Chi-Yong;Boo, Myung-Hwan;Lee, Chang-Sub
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.178-188
    • /
    • 2003
  • The wear of steam generator tubes is due to the vibration occurred between tubes and tube supporters. To predict the future wear depth, the wear constants of the impact and the sliding model is used. The wear constants, 3C/2 and K/3H, are found inversely from known wear depth and time. Using these constants, the future wear depths are found from two bodies that deform the elliptical shape. The results are compared with the measured wear depth of steam generator tubes in a nuclear power plant. The results show that the predicted wear depth envelopes the measured wear depth.

  • PDF

Wear Analysis of a Vibrating Tube supported by Thin Strip Springs incorporating the Supporting Conditions (얇은 판 스프링에 의해 지지되는 튜브의 진동 시 지지조건에 따른 마멸분석)

  • Kim, Hyeong-Gyu;Ha, Jae-Uk;Lee, Yeong-Ho;Heo, Seong-Pil;Gang, Heung-Seok
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.63-70
    • /
    • 2002
  • Wear on the tube-to-spring contact is investigated experimentally. The wear is caused by the vibration of the tube while the springs support it. As for the supporting conditions, applied are the contacting normal force (P) of 5 N, just-contact (P = 0 N) and the gap of 0.1 mm. The gap condition is tried far considering the influence of simultaneous impacting and sliding on wear. Results show that the wear volume increases in the order of the gap, the just-contact and the 5 N conditions. This is explained from the contact geometry of the spring, which is convex of smooth contour. The contact shear force is regarded smaller in the case of the gap existence compared with the other conditions. Wear mechanism is considered from SEM observation of the worn surface. The variation of the normal contact traction is analysed using the finite element analysis to estimate the slip displacement range on the contact with consulting the fretting map previously obtained.

  • PDF

A comparative study on mechanical properties of TiN and TiAlN films prepared by Arc Ion Plating Technique (아크 이온 플레이팅법에 의해 증착된 TiN과 TiAlN 박막의 기계적 특성 비교)

  • 윤석영;이윤복;김광호
    • Journal of the Korean institute of surface engineering
    • /
    • v.35 no.4
    • /
    • pp.199-205
    • /
    • 2002
  • TiN and TiAlN films were deposited on SKD 11 steel substrates by an arc ion plating (AIP) technique. The crystallinity and morphology for the deposited films were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The mechanical properties of both films were investigated through the indentation, impact, and wear test. Those films fairly adherent to SKD 11 steel substrate, showed hardness values of 2300 $\pm$ 100kg/$\textrm{mm}^2$ and 3200 $\pm$ 100kg/$\textrm{mm}^2$ with a load of 25g, respectively. During impact test, TiAlN films showed much superior impact wear resistance to TiN films. It could be suggested that the TiN films was failed relatively by plastic deformation with oxidation during impact test, while TiAlN films was failed by brittle fracture and resisted the oxidation by the impact energy. The friction coefficient of TiAlN films became lower than that of TiN films at high sliding speed condition although it was higher than that of TiN films at low speed. Therefore, TiAlN films was suggested to be more advantageous than TiN films for high speed machining fields.

A Method for Prediction of Tube Wear by Relative Displacement in the case of Inclined Contact between Tube & Support of Steam Generator (증기발생기에서 지지대와 세관의 경사면 접촉시 상대변위에 의한 세관 마모량 예측 방법)

  • Lee, Yong-Son;Park, Moon-Ghu;Kim, Tae-Soon;Park, Chi-Yong;Boo, Myung-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1168-1173
    • /
    • 2003
  • When the tube contacted to support and antivibration bar of the steam generator in unclear power plant, the contact area is worn out by their relative displacement. In the study, wear depths of the tube inclined to tube support and antivibration bar are approximately predicted by a method using the contact load and relative displacement. In the case of the inclined contact, the results show wear depths of the steam generator tube predicted by the impact model are larger than those by the sliding model.

  • PDF

A Study on the Change of Slipperiness of Building Floor-coverings by Friction Wear (건축물 바닥재의 마모에 따른 미끄럼성능 변동에 관한 연구)

  • Shin, Yun-Ho;Choi, Soo-Kyung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.5 no.1 s.15
    • /
    • pp.53-61
    • /
    • 2005
  • The purpose of this study presents useful data on the choice or development of floor covering from slip viewpoint by examining closely the impact of the changes in sliding experiments due to the wear of floor covering by walk. The result of wear practical test per ten thousand walks enforces some kind of popular floor covering and measure of coefficient of slip resistance as follows: (1) When surface of floor covering is in the state of wet, the degree of wear doesn't affect greatly in slip. (2) When surface of floor covering is in dry and clean state, most floor coverings have the tendency to lower the coefficient of slip resistance with the amount of walk on it. (3) Change in the tendency of slip resistance by wear appeared mainly due to the differences in the state of floor covering and organic floor covering appeared to have great reduction of coefficient of slip resistance than the inorganic ones. (4) According to the result of investigation on changes in tendency of coefficient of slip resistance due to the increase in the number of walk and if two hundred thousand walks were done, regardless of surface shape or kind of site, etc, the safety of floor covering, in slip viewpoint, greatly reduces.

Study on the Frictional Properties of Nylons Synthesized by Varying Catalyst Content (촉매 함량 변화에 따라 합성된 나일론의 마찰 특성에 관한 연구)

  • Chung, Dae-Won;Kang, Suk-Choon
    • Polymer(Korea)
    • /
    • v.29 no.1
    • /
    • pp.14-18
    • /
    • 2005
  • Nylons were synthesized by anionic polymerization of ${\varepsilon}$--caprolactam while varying the content of catalyst. Polymerization rates, molecular weights, mechanical properities and frictional properties of the nylons were investigated. As the ratio of catalyst to initiator was increased up to 1.0%, the polymerization rate, conversion and molecular weight were found to increase, and mechanical properties except impact strength were improved. Frictional properties were affected mainly by tensile strength and hardness. According to the study on the friction coefficient, product of stress (P) and velocity (V), PV limit, and abrasive wear rate, nylon synthesized at 1.0% of the ratio of catalyst to initiator showed the best performance for sliding machine elements.

A analysis of friction relation between tennis outsole and tennis playing surfaces (테니스화겉창과 테니스 스포츠바닥재간의 마찰관계상관 분석)

  • Kim, Jung-Tae
    • Korean Journal of Applied Biomechanics
    • /
    • v.12 no.2
    • /
    • pp.361-380
    • /
    • 2002
  • The purposes of this study were to a analysis of friction relation between tennis outsole and tennis playing surfaces. Tennis footwear is an important component of tennis game equipment. It can support or damage players performance and comfort. Most importantly athletic shoes protect the foot preventing abrasions and injuries. Footwear stability in court sports like tennis is incredibly important since it is estimated that as many as 45% of all lower extremity injuries occur in the foot and ankle. The friction force is the force exerted by a surface as an object moves across it or makes an effort to move across it. The friction force opposes the motion of the object. Friction results when two surfaces are pressed together closely, causing attractive intermolecular forces between the molecules of the two different surfaces. The outsole provides traction and reduces wear on the midsole. Today's outsoles address sport specific movements (running versus pivoting) and playing surface types. Different areas of the outsole are designed for the distinct frictional needs of specific movements. Traction created by the friction between the outsole and the surface allows the shoe to grip the surface. As surfaces, conditions and player motion change, traction may need to vary. An athletic shoe needs to grip well when running but not when pivoting. Laboratory tests have demonstrated force reductions compared to impact on concrete. There is a correlation between pain, injury and surface hardness. These are a variety of traction patterns on the soles of athletic shoes. Traction like any other shoe characteristic must be commensurate and balanced with the sport. The equal and opposite force does not necessarily travel back up your leg. The surface itself absorbs a portion of the force converting it to other forms of energy. Subsequently, tennis court surfaces are rated not only for pace but also for the percentage of force reduction.