• Title/Summary/Keyword: Slicing Machine

Search Result 27, Processing Time 0.025 seconds

The Automatic Determination of the Optimal Build-Direction in Rapid Prototyping (고속적층조형법에서 최적 적층방향의 자동결정)

  • 채희창
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.150-155
    • /
    • 1997
  • Rapid Prototyping(RP) is the technique which is used to make prototypes or functional parts directly using the 3-D solid data. Before building the prototype, several processes such as transfering 3D data from CAD system(STL) determination of build-direction, adding support structure and slicing are required. Among the above processes. determination of build-direction is the target of this study. The build direction is determined by many factors according to the objective of the user, like part accuracy, number of support structure, build time, amount of trapped volume, etc, But it is not easy to determine the build-direction because there are many factors and some factors have dependent properties with one another. So, in this study the part accuracy, the number of support structures and build time are considered as the main factor to determine the optimal build-direction. To determine the optimal build-direction for increasing part accuracy, sum of projected area which caused stairstepping effect was considered. The less the projected area is the better part accuracy is About the optimal build-direction to minimize the amount of support structure, sum of projected area of facets that require support structures was considered. About the build time, we considered the minimum height of part we intended. About the build time, we considered the minimun height of part we intended to make.

  • PDF

An Algorithm for the Removing of Offset Loop Twists during the Tool Path Generation of FDM 3D Printer (FDM 3D 프린팅의 경로생성을 위한 옵?루프의 꼬임제거 알고리즘)

  • Olioul, Islam Md.;Kim, Ho-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.3
    • /
    • pp.1-8
    • /
    • 2017
  • Tool path generation is a part of process planning in 3D printing. This is done before actual printing by a computer rather than an AM machine. The mesh geometry of the 3D model is sliced layer-by-layer along the Z-axis and tool paths are generated from the sliced layers. Each 2-dimensional layer can have two types of printing paths: (i) shell and (ii) infill. Shell paths are made of offset loops. During shell generation, twists can be produced in offset loops which will cause twisted tool paths. As a twisted tool path cannot be printed, it is necessary to remove these twists during process planning. In this research, An algorithm is presented to remove twists from the offset loops. To do so the path segments are traversed to identify twisted points. Outer offset loops are represented in the counter-clockwise segment order and clockwise rotation for the inner offset loop to decide which twisted loop should be removed. After testing practical 3D models, the proposed algorithm is verified to use in tool path generation for 3D printing.

A Study on the Analysis of Security Requirements through Literature Review of Threat Factors of 5G Mobile Communication

  • DongGyun Chu;Jinho Yoo
    • Journal of Information Processing Systems
    • /
    • v.20 no.1
    • /
    • pp.38-52
    • /
    • 2024
  • The 5G is the 5th generation mobile network that provides enhanced mobile broadband, ultra-reliable & low latency communications, and massive machine-type communications. New services can be provided through multi-access edge computing, network function virtualization, and network slicing, which are key technologies in 5G mobile communication. However, these new technologies provide new attack paths and threats. In this paper, we analyzed the overall threats of 5G mobile communication through a literature review. First, defines 5G mobile communication, analyzes its features and technology architecture, and summarizes possible security issues. Addition, it presents security threats from the perspective of user devices, radio access network, multi-access edge computing, and core networks that constitute 5G mobile communication. After that, security requirements for threat factors were derived through literature analysis. The purpose of this study is to conduct a fundamental analysis to examine and assess the overall threat factors associated with 5G mobile communication. Through this, it will be possible to protect the information and assets of individuals and organizations that use 5G mobile communication technology, respond to various threat situations, and increase the overall level of 5G security.

A BERT-Based Deep Learning Approach for Vulnerability Detection (BERT를 이용한 딥러닝 기반 소스코드 취약점 탐지 방법 연구)

  • Jin, Wenhui;Oh, Heekuck
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.6
    • /
    • pp.1139-1150
    • /
    • 2022
  • With the rapid development of SW Industry, softwares are everywhere in our daily life. The number of vulnerabilities are also increasing with a large amount of newly developed code. Vulnerabilities can be exploited by hackers, resulting the disclosure of privacy and threats to the safety of property and life. In particular, since the large numbers of increasing code, manually analyzed by expert is not enough anymore. Machine learning has shown high performance in object identification or classification task. Vulnerability detection is also suitable for machine learning, as a reuslt, many studies tried to use RNN-based model to detect vulnerability. However, the RNN model is also has limitation that as the code is longer, the earlier can not be learned well. In this paper, we proposed a novel method which applied BERT to detect vulnerability. The accuracy was 97.5%, which increased by 1.5%, and the efficiency also increased by 69% than Vuldeepecker.

Effect of Toughness Index of Diamond Abrasives on Cutting Performance in Wire Sawing Process (와이어쏘 공정에서 다이아몬드 입자의 인성지수가 절단 성능에 미치는 영향)

  • Kim, Do-Yeon;Lee, Tae-Kyung;Kim, Hyoung-Jae
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.4_2
    • /
    • pp.675-682
    • /
    • 2020
  • Multi-wire sawing is the prominent technology employed to cut hard material ingots into wafers. This paper aimed to research the effect of diamond toughness index on the cutting performance of electroplated diamond wire. Three different toughness index of diamond abrasives were used to manufacture electroplated diamond wires. The cutting performance of electroplated diamond wire is verified through experiments, in which sapphire ingot are cut using single wire sawing machine. A single wire saw for constant load slicing is developed for the cutting performance evaluation of electroplated diamond wire. Choosing the cutting depth, total cutting depth, cutting force and wear of electroplated diamond wires as evaluation parameters, the performance of electroplated diamond wire is evaluated. The results of this study showed that there was a significant direct relationship between the toughness index of diamond abrasives and the cutting performance. Results demonstrated that diamond abrasive with a high toughness index showed higher cutting performance. However, all diamond abrasives showed similar cutting performance under low load conditions. The results of this paper are useful for the development of cutting large diameter ingots and cutting high hardness ingots at high speed.

Network Slice Selection Function on M-CORD (M-CORD 기반의 네트워크 슬라이스 선택 기능)

  • Rivera, Javier Diaz;Khan, Talha Ahmed;Asif, Mehmood;Song, Wang-Cheol
    • KNOM Review
    • /
    • v.21 no.2
    • /
    • pp.35-45
    • /
    • 2018
  • As Network Slicing functionality gets applied to mobile networking, a mechanism that enables the selection of network slices becomes indispensable. Following the 3GPP Technical Specification for the 5G Architecture, the inclusion of the Network Slice Selection Function (NSSF) in order to leverage the process of slice selection is apparent. However, actual implementation of this network function needs to deal with the dynamic changes of network instances, due to this, a platform that supports the orchestration of Virtual Network Functions (VNF) is required. Our proposed solution include the use of the Central Office Rearchitected as a Data Center (CORD) platform, with the specified profile for mobile networks (M-CORD) that integrates a service orchestrator (XOS) alongside solutions oriented to Software Defined Networking (SDN), Network Function Virtualization (VNF) and virtual machine management through OpenStack, in order to provide the right ecosystem where our implementation of NSSF can obtain slice information dynamically by relying on synchronization between back-end services and network function instances.

Correlation Analysis of Inspection Results and ATP Bioluminescence Assay for Verification of Hygiene Status at 5 Star Hotels in Korea (국내 주요 5성급 호텔의 위생실태 조사와 ATP 결과의 상관분석 평가 연구)

  • Kim, Bo-Ram;Lee, Jung-A;Ha, Sang-Do
    • Journal of Food Hygiene and Safety
    • /
    • v.36 no.1
    • /
    • pp.42-50
    • /
    • 2021
  • Along with the rapid growth of the food service industry, food safety requirements and hygiene are increasing in importance in restaurants and hotels. Accordingly, there is a need for quick and practical monitoring techniques to determine hygiene status in the field. In this study, we investigated 5 domestic 5-star hotels specifically, personal hygiene (hands of workers), cooking utensils (knife, cutting board, food storage container, slicing machine blade, ice-maker scoop) and other facilities (refrigerator handle, sink). In addition, we examined the hygiene management status of customer contact points (tongs for buffet, etc.) to derive the correlation between the ATP values as a, a verification method. As a result of our five-hotel survey, we found that cooking utensils and personal hygiene were relatively sanitary compared to other inspection items (cookware 92.2%, personal hygiene 91.4%, facilities and equipment 76.19%, customer contact items 88.6%). According to our ATP-based mothod, kitchen utensils (51 ± 45 RLU/25㎠) were relatively clean compared to other with facilities and equipment (167 ± 123 RLU/25㎠). In the present study, we also evaluated the usefulness of the ATP bioluminescence method for monitoring surface hygiene at hotel restaurants. After correlation analysis of surveillance of hygienic status points and ATP assay, most results showed negative and high correlation (-0.64--0.89). Our ATP assay (92 ± 67 RLU/25㎠) of each item after cleaning showed signigicantly reduced results compared to the ATP assay (1020 ± 1254 RLU/25㎠) for normal status, thereby indicating its suitability as a tool to verify the validity of cleaning. By our results, ATP bioluminescence could be used as an effective tool for visual numerical evaluation of invisible contaminants.