• 제목/요약/키워드: Slice encoding for metal artifact correction(SEMAC)

검색결과 3건 처리시간 0.019초

Image Denoising for Metal MRI Exploiting Sparsity and Low Rank Priors

  • Choi, Sangcheon;Park, Jun-Sik;Kim, Hahnsung;Park, Jaeseok
    • Investigative Magnetic Resonance Imaging
    • /
    • 제20권4호
    • /
    • pp.215-223
    • /
    • 2016
  • Purpose: The management of metal-induced field inhomogeneities is one of the major concerns of distortion-free magnetic resonance images near metallic implants. The recently proposed method called "Slice Encoding for Metal Artifact Correction (SEMAC)" is an effective spin echo pulse sequence of magnetic resonance imaging (MRI) near metallic implants. However, as SEMAC uses the noisy resolved data elements, SEMAC images can have a major problem for improving the signal-to-noise ratio (SNR) without compromising the correction of metal artifacts. To address that issue, this paper presents a novel reconstruction technique for providing an improvement of the SNR in SEMAC images without sacrificing the correction of metal artifacts. Materials and Methods: Low-rank approximation in each coil image is first performed to suppress the noise in the slice direction, because the signal is highly correlated between SEMAC-encoded slices. Secondly, SEMAC images are reconstructed by the best linear unbiased estimator (BLUE), also known as Gauss-Markov or weighted least squares. Noise levels and correlation in the receiver channels are considered for the sake of SNR optimization. To this end, since distorted excitation profiles are sparse, $l_1$ minimization performs well in recovering the sparse distorted excitation profiles and the sparse modeling of our approach offers excellent correction of metal-induced distortions. Results: Three images reconstructed using SEMAC, SEMAC with the conventional two-step noise reduction, and the proposed image denoising for metal MRI exploiting sparsity and low rank approximation algorithm were compared. The proposed algorithm outperformed two methods and produced 119% SNR better than SEMAC and 89% SNR better than SEMAC with the conventional two-step noise reduction. Conclusion: We successfully demonstrated that the proposed, novel algorithm for SEMAC, if compared with conventional de-noising methods, substantially improves SNR and reduces artifacts.

Susceptibility Artifact를 감소시키는 SEMAC 사용 시 Turbo Factor 변화에 따른 영상의 유용성 평가 (Evaluation of Image Usability by SEMAC Turbo Factor Change using Susceptibility Artifact Reduction)

  • 최영재;김상현
    • 한국방사선학회논문지
    • /
    • 제13권1호
    • /
    • pp.31-37
    • /
    • 2019
  • 본 연구에서는 Metal 환자를 대상으로 자기공명영상검사를 할 때 발생할 수 있는 자화율 인공물을 줄이기 위해 SEMAC(Slice Encoding for Metal Artifact Correction) 기법을 사용하여 실험하였다. 실험도구는 신체 조직과 유사한 Foot&Ankle Phantom을 사용하였으며 자화율 인공물을 만들기 위해 3.8 cm의 일반 나사못을 사용하였다. 실험장비는 3.0T Magnetom Skyra를 이용하였으며, 얻어진 영상에서는 신호 꺼짐 현상이 가장 두드러지는 17번째 영상으로 면적을 측정하였다. 분석방법은 동일한 부위에서의 신호 꺼짐 현상의 면적을 측정한 후에 통계프로그램인 SPSS(Ver.25)를 사용하여 평균을 구한 후 Wilcoxon 부호순위검정(Signed Rank Test)으로 유의성을 평가하였다. 연구결과 Non SEMAC일 때의 면적은 $289.5300{\pm}23.07197mm$로 신호 꺼짐 현상이 가장 크게 나타났으며 SEMAC 사용 후 Turbo Factor를 3, 4, 5로 변화를 주었을 때 각각 $125.0200{\pm}7.45875mm$, $120.9600{\pm}12.01704mm$, $108.7900{\pm}16.53498mm$로 감소하였다. 결론적으로 본 연구는 SEMAC 사용 시 자화율 인공물을 효과적으로 감소시켜 SEMAC의 유의성을 증명하였고 TF를 함께 적용하였을 때 촬영시간 감소와 인공물의 면적을 효과적으로 줄일 수 있음을 보여준다.

인공 무릎관절에서 자화율 인공물의 감소를 위한 O-MAR XD 기법의 평가 (Evaluation of O-MAR XD Technique for Reduction of Magnetic Susceptibility Artifact of Knee Implant)

  • 이정훈
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제41권5호
    • /
    • pp.413-419
    • /
    • 2018
  • Magnetic Resonance Imaging for patients with metallic implant has poor image quality, and signal loss and artifacts including distortion can occur. The purpose of this study is to carry out a comparative evaluation on high receive bandwidth(hiBW), O-MAR, O-MAR XD to reduce artifacts in knee implant. To take MRI, 3.0T scanner and dual-source radiofrequency transmission were used. O-MAR XD technique's strong option showed a significant difference (p<0.001) with O-MAR XD technique's weak option, O-MAR and hiBW excluding the medium option. O-MAR XD's medium option had a significant difference (p<0.01) with O-MAR XD's weak, O-MAR and hiBW. O-MAR XD technique's weak option had a significant difference (p<0.01) with O-MAR XD's strong and medium options, O-MAR and hiBW. O-MAR technique had a significant difference (p<0.001) with strong, medium, weak options of O-MAR XD technique except for hiBW. HiBW had a significant difference (p<0.001) with strong, medium and weak options of O-MAR XD technique except for O-MAR. The results showed that O-MAR XD technique was more useful for MRI scan for patients with knee replacement surgery than traditional techniques such as hiBW or O-MAR, and susceptibility artifacts decreased more when O-MAR XD technique's strong or medium option was applied. Based on the results above, it is considered that it will be possible to acquire images whose susceptibility artifacts were highly decreased by using O-MAR XD technique's strong or medium option when conducting MRI for artificial knee joint and it will be helpful for checking and monitoring patients with knee joint replacement.