• Title/Summary/Keyword: Slewing bearing

Search Result 13, Processing Time 0.021 seconds

Analysis of Contact Stress in Slewing Ring Bearings (슬루잉 링 베어링의 접촉응력분포에 관한 연구)

  • 김청균;이승렬
    • Tribology and Lubricants
    • /
    • v.11 no.2
    • /
    • pp.24-33
    • /
    • 1995
  • This paper presents the contact stress distributions between the multi-contact bodies and the total reaction forces for various types of contact geometry for multi-load slewing ring bearings. The FEM results indicate that the slope of the roller type of slewing ring bearing has slightly steeper than that of the ball type. This is because the roller type wire race bearings is stiffer than the ball type bearing. The total reaction force of ball type slewing bearing shows much higher than that of wire race slewing bearings.

Contact Fatigue Strength Design of a Slewing Bearing Based on i-PGS (i-PGS 기반 선회베어링의 접촉피로강도 설계)

  • Kwon, Soon-man;Shin, Heung Chul
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.1
    • /
    • pp.21-29
    • /
    • 2016
  • To overcome the large ring gear manufacturing problems seen in slewing bearings and girth gears, pin gear drive units have been developed. Among them, a novel slewing bearing with an internal pinwheel gear set (i-PGS) is introduced in this paper. First, we consider the exact cam pinion profile of i-PGS with the introduction of a profile shift coefficient. Furthermore, a new root relief profile modification for the i-PGS cam pinion is presented. Then, the contact stresses are investigated to determine the characteristics of the surface fatigue by varying the shape design parameters. The results show that the contact stresses of i-PGS can be reduced significantly by increasing the profile shift coefficient. In addition, the contact ratio, a measure of teeth overlapping action, decreases with the decrease of the allowable pressure angle.

A Study on a Finite Element Analysis Method Using Simplified Ball Models of Wind Turbine Ball Bearings (풍력발전기용 볼 베어링의 단순화 볼 모델을 이용한 해석기법 연구)

  • Seung-Woo Kim;Jung-Woo Song;Jun-Pyo Hong;Jong-Hoon Kang
    • Journal of Wind Energy
    • /
    • v.14 no.4
    • /
    • pp.21-28
    • /
    • 2023
  • This study focuses on the analysis of slewing ball bearings in wind turbines. Slewing bearings have an outer diameter of several meters, and hundreds of balls are in contact with the raceway. Due to the large number of balls and raceway contact conditions, it is difficult to accurately analyze contact stresses using general analysis techniques. To analyze the contact stress of a slewing ball bearing, the sub-modeling method is applied, which is a technique that first analyzes the displacement of the entire model and then analyzes the local stress at the point of maximum displacement. In order to reduce the displacement analysis time of the entire ball bearing, the technique of replacing the ball with a nonlinear spring is adopted. The analytical agreement of the simplified model was evaluated by comparing it with a solid mesh model of the ball for three models with different spring attachment methods. It was found that for the condition where a large turnover moment is applied to the bearing, increasing the number of spring elements gives the closest results to modeling the ball with a solid mesh.

Contact Stress of Slewing Ring Bearing with External Pinwheel Gear Set (핀 휠을 구비한 외륜형 선회베어링의 면압강도)

  • Kwon, Soon-man
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.2
    • /
    • pp.231-237
    • /
    • 2015
  • The pin-gear drive is a special form of fixed-axle gear mechanism. A large wheel with cylindrical pin teeth is called a pinwheel. As pinwheels are rounded, they have a simple structure, easy processing, low cost, and easy overhaul compared with general gears. They are also suitable for low-speed, heavy-duty mechanical transmission and for occasions with more dust, poor lubrication, etc. This paper introduces a novel slewing ring bearing with an external pinwheel gear set (e-PGS). First, we consider the exact cam pinion profile of the e-PGS with the introduction of a profile shift. Then, the contact stresses are investigated to determine the characteristics of the surface fatigue by varying the shape design parameters. The results show that the contact stresses of the e-PGS can be lowered significantly by increasing the profile shift coefficient.

Effects of Bearing Characteristic on the Gear Load Distribution in the Slewing Reducer for Excavator (굴삭기용 선회감속기의 베어링 특성이 기어 하중 분포에 미치는 영향 분석)

  • Kim, Jeong-Gil;Park, Young-Jun;Lee, Geun-Ho;Kim, Jae-Hoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.5
    • /
    • pp.8-14
    • /
    • 2014
  • A slewing reducer consists of two planetary gearsets which require a good load distribution over the gear tooth flank for enhanced durability. This work investigates how the bearing characteristics influence the load distribution over the gear tooth flank. A complete system model is developed to analyze a slewing reducer, including the non-linear mesh stiffness of the gears and the non-linear stiffness of bearings. The results indicate that the type, arrangement and preload of the output shaft bearings greatly influence the gear mesh misalignment, contact pattern, face load factor, gear safety factor and lifetimes of the parts.

Loading Test Results of Wind Turbine Pitch/Yaw Bearing (풍력발전기용 피치/요 베어링의 하중 시험 결과)

  • Nam, Ju-Seok;Kim, Heung-Sub;Lee, Young-Soo;Han, Jeong-Woo
    • Journal of Wind Energy
    • /
    • v.3 no.1
    • /
    • pp.61-67
    • /
    • 2012
  • The loading test of wind turbine pitch and yaw bearings have been conducted using special test rig designed for the test of large slewing bearings. Test type was fatigue test that applied fatigue load to each bearing and followed the defined test process. Measurement data during test were rotational torque and raceway temperature, and inspected key components by disassembling the bearing after all test finished. As a results, the raceway temperature during test did not exceed the operational temperature range of lubricant and rotational torque was reduced as the bearing's rotational cycle increased. In the inspection of key components, some plastic deformation and flaking were detected at some raceway sections while other components such as ball, spacer and seal remain indefective conditions.

Structural Stability Evaluation for Special Vehicle Slewing Bearing using Finite Element Analysis (유한요소해석을 통한 특수차량용 선회베어링의 구조 안전성 평가)

  • Seo, Hyun-Soo;Lee, Ho-Jun;An, Tae-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.511-519
    • /
    • 2021
  • Slewing bearing is applied to the transmission of rotational power of the body and turret in a special vehicle for anti-aircraft weapons that overcomes the enemy flight system approaching at low altitudes with rapid response fire. When the turret load and impact load generated when shooting are combined in performing the combat mission of a special vehicle, structural stability must be secured to achieve a successful function. Among the components of the slewing bearing, the stability of the components against the complex loads acting by the turret drive and shooting was evaluated by considering the shape and material characteristics of the ring-gear, roller, and wire-race. As a research method for stability evaluation, based on engineering theory, the strength characteristics of the components were examined by numerical calculations. Finite element analysis was performed on components using the ANSYS analysis program. The results of theoretical analysis and the results of finite element analysis were very similar. A structural stability evaluation for the slewing bearing, which was performed mainly on the analysis, confirmed that the design strength of the slewing bearing determined in the preliminary design in the early stage of localization development was sufficient.

Finite Element Analysis of Slewing Bearings for Wind Turbines Using Spring Elements (스프링요소를 이용한 풍력발전기용 슬루잉 베어링의 유한요소해석)

  • Han, Ki-Bong;Kang, Jong-Hun
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.11
    • /
    • pp.239-247
    • /
    • 2020
  • This study is about design and verification of stress reduction of bearings for wind turbines. In a slewing bearing having a typical four-contact structure, the contact point moves to the end of the raceway due to a large moment load, resulting in a stress concentration. A bearing was designed to reduce such contact point movement. The deformation behavior of typical ball bearings and newly designed bearings was calculated through finite element analysis under ultimate load by replacing the ball with a spring element. The contact stress between the ball and the raceway was calculated by finite element analysis by inputting the deformation behavior analysis result as a boundary condition. The effectiveness of the bearing stress analysis method using spring elements was verified through comparison of the contact stress according to the bearing structure.