• Title/Summary/Keyword: Sled test

Search Result 66, Processing Time 0.025 seconds

A Study on Protection of Rear Submarine of 5th percentile Female Dummy (5th%ile 여성 인체모형 뒷좌석 서브마린 방지에 대한 연구)

  • Kim, Hong Gyu;Yum, Sun Ill;Jin, Wook
    • Journal of Auto-vehicle Safety Association
    • /
    • v.9 no.3
    • /
    • pp.13-18
    • /
    • 2017
  • Since 2015, Euro-NCAP and C-NCAP have enhanced regulation on submarine of rear female passenger. This submarine regulation is a big obstacle to achieve the highest level crash performance. So the objective of this study is to develop new technical way to protect rear female passenger against submarine. In this study, we figured out how design factors of seatbelt affect submarine of rear female passenger by sled test. And we verified that rear passenger submarine can be improved by increasing intersection angle of seatbelt anchor and rotation amount of seatbelt buckle. Based on these results, this paper proposes a new invention of seatbelt buckle and anchor that can improve rear passenger submarine. One is seatbelt buckle that can be detached from stopper to prevent rotation and the other is seatbelt anchor that can be changed the structure so as to incline forward during crash. Finally we proved that submarine of rear female passenger can be improved by the effectiveness of new inventions.

Damage and vibrations of nuclear power plant buildings subjected to aircraft crash part II: Numerical simulations

  • Li, Z.R.;Li, Z.C.;Dong, Z.F.;Huang, T.;Lu, Y.G.;Rong, J.L.;Wu, H.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.3085-3099
    • /
    • 2021
  • Investigations of large commercial aircraft impact effect on nuclear power plant (NPP) buildings have been drawing extensive attentions, particularly after the 9/11 event, and this paper aims to numerically assess the damage and vibrations of NPP buildings subjected to aircrafts crash. In Part I of present paper, two shots of reduce-scaled model test of aircraft impact on NPP were conducted based on the large rocket sled loading test platform. In the present part, the numerical simulations of both scaled and prototype aircraft impact on NPP buildings are further performed by adopting the commercial program LS-DYNA. Firstly, the refined finite element (FE) models of both scaled aircraft and NPP models in Part I are established, and the model impact test is numerically simulated. The validities of the adopted numerical algorithm, constitutive model and the corresponding parameters are verified based on the experimental NPP model damages and accelerations. Then, the refined simulations of prototype A380 aircraft impact on a hypothetical NPP building are further carried out. It indicates that the NPP building can totally withstand the impact of A380 at a velocity of 150 m/s, while the accompanied intensive vibrations may still lead to different levels of damage on the nuclear related equipment. Referring to the guideline NEI07-13, a maximum acceleration contour is plotted and the shock damage propagation distances under aircraft impact are assessed, which indicates that the nuclear equipment located within 11.5 m from the impact point may endure malfunction. Finally, by respectively considering the rigid and deformable impacts mainly induced by aircraft engine and fuselage, an improved Riera function is proposed to predict the impact force of aircraft A380.

A Safety Assessment on Light Weight Wheelchair Occupant in Frontal Crash (경량 휠체어 탑승자의 차량 전방충돌시 안전성 평가)

  • 김성민;김성재;강태건
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.1
    • /
    • pp.15-21
    • /
    • 2003
  • In this study, for a safetv assessment of light weight wheelchair occupant in frontal crash, we tested a dynamic sled impact test. we carried out total 6 times test and impact speed was 20g/48 km/h. By using Hybrid III 50%ile male dummy, head injury criteria(HIC), neck flexion moment, neck axial tension force, neck shear force. chest acceleration, head, wheelchair and knee excursion were measured, we evaluated light weight wheelchair occupant safety by motion criteria(MC) which proposed in SAE J2249 and combined injury criteria(CIC) which is a voluntary standard(GM-IARV) of General Motors Co.. when we assumed that the maximum injury value in frontal crash was 100%, the result of motion criteria(MC) of wheelchair occupant was 52%, occupant upper body injury index(CIC) was 60.1%.

The Development of an Adjustable Dual-Level Load Limiter (적응형 듀얼레벨 로드리미터 개발)

  • Lee, In-Beom;Kang, Shin-You;Kim, Seock-Hyun;Ryoo, Won-Wha
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.10
    • /
    • pp.1187-1191
    • /
    • 2011
  • In this paper, the development of an adjustable load limiter is presented, which is a component of the seat belt. The adjustable load limiter is loaded at different levels for varied weights and heights of occupant. The recent regulation FMVSS 208 demands strict safety standards for different percentiles of dummy size. In this work, high- and low-level load conditions are proposed according to dummy scale and thoracic injury criteria. The suggested load conditions were verified by performing a sled test using the benchmark model. A dual-level load limiter has been developed on the basis of these tests. Experiments were conducted on the product performance, and finite element analysis was carried out; the results confirmed the points for improvement.

Strength Characterisation of Composite Securement Device in the Vehicle by FE Analysis (유한요소해석을 통한 차량내 복합재 휠체어 고정구의 구조 강도 특성 평가)

  • Ham, Seok-Woo;Yang, Dong-Gyu;Son, Seung-Neo;Eo, Hyo-Kyoung;Kim, Gyeong-Seok;Cheon, Seong S.
    • Composites Research
    • /
    • v.32 no.4
    • /
    • pp.171-176
    • /
    • 2019
  • In this paper, the strength of the composite securement device was characterised by FE analysis. Preliminary frontal crash analysis for the vehicle, equipped with the conventional steel securement device, was carried out according to the ISO 10542 for special transportation to obtain loading data, which were applied to securement device during crash. The securement device consists of block, guide and rail and the weight fraction of rail was the highest among them, therefore, it is desirable to reduce weight of rail by applying carbon/epoxy composite. Also, it was found that 27% of lightweight effect was obtained by hybrid rail that bottom part was replaced by a composite compared to the conventional rail, i.e., made of SAPH 440, without sacrificing the structural strength.

Damage and vibrations of nuclear power plant buildings subjected to aircraft crash part I: Model test

  • Li, Z.R.;Li, Z.C.;Dong, Z.F.;Huang, T.;Lu, Y.G.;Rong, J.L.;Wu, H.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.3068-3084
    • /
    • 2021
  • Investigations of large commercial aircraft impact effect on nuclear power plant (NPP) buildings have been drawing extensive attentions, particularly after the 9/11 event, and this paper aims to experimentally assess the damage and vibrations of NPP buildings subjected to aircraft crash. In present Part I, two shots of reduce-scaled model test of aircraft impacting on NPP building were carried out. Firstly, the 1:15 aircraft model (weighs 135 kg) and RC NPP model (weighs about 70 t) are designed and prepared. Then, based on the large rocket sled loading test platform, the aircraft models were accelerated to impact perpendicularly on the two sides of NPP model, i.e., containment and auxiliary buildings, with a velocity of about 170 m/s. The strain-time histories of rebars within the impact area and acceleration-time histories of each floor of NPP model are derived from the pre-arranged twenty-one strain gauges and twenty tri-axial accelerometers, and the whole impact processes were recorded by three high-speed cameras. The local penetration and perforation failure modes occurred respectively in the collision scenarios of containment and auxiliary buildings, and some suggestions for the NPP design are given. The maximum acceleration in the 1:15 scaled tests is 1785.73 g, and thus the corresponding maximum resultant acceleration in a prototype impact might be about 119 g, which poses a potential threat to the nuclear equipment. Furthermore, it was found that the nonlinear decrease of vibrations along the height was well reflected by the variations of both the maximum resultant vibrations and Cumulative Absolute Velocity (CAV). The present experimental work on the damage and dynamic responses of NPP structure under aircraft impact is firstly presented, which could provide a benchmark basis for further safety assessments of prototype NPP structure as well as inner systems and components against aircraft crash.