• Title/Summary/Keyword: Slant image

Search Result 56, Processing Time 0.029 seconds

Multi Characters Detection Using Color Segmentation and LoG operator characteristics in Natural Scene (자연영상에서 컬러분할과 LoG연산특성을 이용한 다중 문자 검출에 관한 연구)

  • Shin, Seong;Baek, Young-Hyun;Moon, Sung-Ryong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.2
    • /
    • pp.216-222
    • /
    • 2008
  • This paper proposed the multi characters detection algorithm using Color segmentation and the closing curve feature of LoG Operator in order to complement the demerit of the existing research which is weak in complexity of background, variety of light and disordered line and similarity of left and background color, etc. The proposed multi characters detection algorithm divided into three parts : The feature detection, characters format and characters detection Parts in order to be possible to apply to image of various feature. After preprocess that the new multi characters detection algorithm that proposed in this paper used wavelet, morphology, hough transform which is the synthesis logical model in order to raise detection rate by acquiring the non-perfection characters as well as the perfection characters with processing OR operation after processing each color area by AND operation sequentially. And the proposal algorithm is simulated with natural images which include natural character area regardless of size, resolution and slant and so on of image. And the proposal algorithm in this paper is confirmed to an excellent detection rate by compared with the conventional detection algorithm in same image.

An Improved License Plate Recognition Technique in Outdoor Image (옥외영상의 개선된 차량번호판 인식기술)

  • Kim, Byeong-jun;Kim, Dong-hoon;Lee, Joonwhoan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.5
    • /
    • pp.423-431
    • /
    • 2016
  • In general LPR(License Plate Recognition) in outdoor image is not so simple differently from in the image captured from manmade environment, because of geometric shape distortion and large illumination changes. this paper proposes three techniques for LPR in outdoor images captured from CCTV. At first, a serially connected multi-stage Adaboost LP detector is proposed, in which different complementary features are used. In the proposed detector the performance is increased by the Haar-like Adaboost LP detector consecutively connected to the MB-LBP based one in serial manner. In addition the technique is proposed that makes image processing easy by the prior determination of LP type, after correction of geometric distortion of LP image. The technique is more efficient than the processing the whole LP image without knowledge of LP type in that we can take the appropriate color to gray conversion, accurate location for separation of text/numeric character sub-images, and proper parameter selection for image processing. In the proposed technique we use DBN(Deep Belief Network) to achieve a robust character recognition against stroke loss and geometric distortion like slant due to the incomplete image processing.

Automatic gasometer reading system using selective optical character recognition (관심 문자열 인식 기술을 이용한 가스계량기 자동 검침 시스템)

  • Lee, Kyohyuk;Kim, Taeyeon;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.1-25
    • /
    • 2020
  • In this paper, we suggest an application system architecture which provides accurate, fast and efficient automatic gasometer reading function. The system captures gasometer image using mobile device camera, transmits the image to a cloud server on top of private LTE network, and analyzes the image to extract character information of device ID and gas usage amount by selective optical character recognition based on deep learning technology. In general, there are many types of character in an image and optical character recognition technology extracts all character information in an image. But some applications need to ignore non-of-interest types of character and only have to focus on some specific types of characters. For an example of the application, automatic gasometer reading system only need to extract device ID and gas usage amount character information from gasometer images to send bill to users. Non-of-interest character strings, such as device type, manufacturer, manufacturing date, specification and etc., are not valuable information to the application. Thus, the application have to analyze point of interest region and specific types of characters to extract valuable information only. We adopted CNN (Convolutional Neural Network) based object detection and CRNN (Convolutional Recurrent Neural Network) technology for selective optical character recognition which only analyze point of interest region for selective character information extraction. We build up 3 neural networks for the application system. The first is a convolutional neural network which detects point of interest region of gas usage amount and device ID information character strings, the second is another convolutional neural network which transforms spatial information of point of interest region to spatial sequential feature vectors, and the third is bi-directional long short term memory network which converts spatial sequential information to character strings using time-series analysis mapping from feature vectors to character strings. In this research, point of interest character strings are device ID and gas usage amount. Device ID consists of 12 arabic character strings and gas usage amount consists of 4 ~ 5 arabic character strings. All system components are implemented in Amazon Web Service Cloud with Intel Zeon E5-2686 v4 CPU and NVidia TESLA V100 GPU. The system architecture adopts master-lave processing structure for efficient and fast parallel processing coping with about 700,000 requests per day. Mobile device captures gasometer image and transmits to master process in AWS cloud. Master process runs on Intel Zeon CPU and pushes reading request from mobile device to an input queue with FIFO (First In First Out) structure. Slave process consists of 3 types of deep neural networks which conduct character recognition process and runs on NVidia GPU module. Slave process is always polling the input queue to get recognition request. If there are some requests from master process in the input queue, slave process converts the image in the input queue to device ID character string, gas usage amount character string and position information of the strings, returns the information to output queue, and switch to idle mode to poll the input queue. Master process gets final information form the output queue and delivers the information to the mobile device. We used total 27,120 gasometer images for training, validation and testing of 3 types of deep neural network. 22,985 images were used for training and validation, 4,135 images were used for testing. We randomly splitted 22,985 images with 8:2 ratio for training and validation respectively for each training epoch. 4,135 test image were categorized into 5 types (Normal, noise, reflex, scale and slant). Normal data is clean image data, noise means image with noise signal, relfex means image with light reflection in gasometer region, scale means images with small object size due to long-distance capturing and slant means images which is not horizontally flat. Final character string recognition accuracies for device ID and gas usage amount of normal data are 0.960 and 0.864 respectively.

Laparoscope Manipulator Control for Minimally Invasive Surgery (최소침습수술을 위한 복강경 매니퓰레이터 제어)

  • Kim, Soo-Hyun;Kim, Kwang-Gi;Jo, Yung-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.7
    • /
    • pp.685-696
    • /
    • 2011
  • An efficient laparoscope manipulator robot was designed to automatically control the position of laparoscope via a passive joint on end-effector position. The end position of the manipulator is controlled to have corresponding velocity defined in the global coordinate space using laparoscopic visual information. Desired spatial position of laparoscope was derived from detected positions of surgical instrument tips, then the clinical viewing plane was moved by visual servoing task. The laparoscope manipulator is advantageous for automatically maintaining clinically important views in the laparoscopic image without any additional operator. A laparoscope is mounted to a holder which is linked to four degree of freedom manipulator via universal joint-type passive rings connection. No change in the design of laparoscope or manipulator is necessary for its application to surgery assistant robot system. Expanded working space and surgical efficiency were accomplished by implementing slant linking structure between laparoscope and manipulator. To ensure reliable positioning accuracy and controllability, the motion of laparoscope in an abdominal space through trocar was inspected using geometrical analysis. A designed laparoscope manipulating robot system can be easily set up and controlled in an operation room since it has a few subsidiary devices such as a laparoscope light source regulator, a control PC, and a power supply.

Target Geolocation Method Using Target Detection in Infrared Images (적외선 영상의 탐지 정보를 이용한 표적 geolocation 기법)

  • Kim, Jae-Hyup;Jeong, Jun-Ho;Seo, Jeong-Jae;Lee, Jong-Min;Moon, Young-Shik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.3
    • /
    • pp.57-67
    • /
    • 2015
  • In this paper, we proposed the geolocation method using target detection information in infrared images. Our method was applied to geolocation system of hostile targets in ground-to-ground field. The major distortion that has bad effect of geolocation was composed of optic, topography, GPS(Global Positioning System) and IMU(Inertial Measurement Unit) of reconnaissance unit. We proposed enhanced geolocation method to cope with optic and topography distortion using polynomial fitting and slant-range calculation model to overcome earth curvature problem, and the result showed that the performance of our method was good for system requirements.

Real-time Slant Face detection using improvement AdaBoost algorithm (개선한 아다부스트 알고리즘을 이용한 기울어진 얼굴 실시간 검출)

  • Na, Jong-Won
    • Journal of Advanced Navigation Technology
    • /
    • v.12 no.3
    • /
    • pp.280-285
    • /
    • 2008
  • The traditional face detection method is to use difference picture method are used to detect movement. However, most do not consider this mathematical approach using real-time or real-time implementation of the algorithm is complicated, not easy. This paper, the first to detect real-time facial image is converted YCbCr and RGB video input. Next, you convert the difference between video images of two adjacent to obtain and then to conduct Glassfire Labeling. Labeling value compared to the threshold behavior Area recognizes and converts video extracts. Actions to convert video to conduct face detection, and detection of facial characteristics required for the extraction and use of AdaBoost algorithm.

  • PDF

A Study on Automatic Inspection Technology of Machinery Parts Based on Pattern Recognition (패턴인식에 의한 기계부품 자동검사기술에 관한 연구)

  • Cha, Bo-Nam;Roh, Chun-Su;Kang, Sung-Ki;Kim, Won-il
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.17 no.2
    • /
    • pp.77-83
    • /
    • 2014
  • This paper describes a new technology to develop the character recognition technology based on pattern recognition for non-contacting inspection optical lens slant or precision parts, and including external form state of lens or electronic parts for the performance verification, this development can achieve badness finding. And, establish to existing reflex data because inputting surface badness degree of scratch's standard specification condition directly, and error designed to distinguish from product more than schedule error to badness product by normalcy product within schedule extent after calculate the error comparing actuality measurement reflex data and standard reflex data mutually. Developed system to smallest 1 pixel unit though measuring is possible 1 pixel as $37{\mu}m{\times}37{\mu}m$ ($0.1369{\times}10-4mm^2$) the accuracy to $1.5{\times}10-4mm$ minutely measuring is possible performance verification and trust ability through an experiment prove.

$\emph{A Priori}$ and the Local Font Classification (연역적이고 국부적인 영문자의 폰트 분류법)

  • 정민철
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.3 no.4
    • /
    • pp.245-250
    • /
    • 2002
  • This paper presents a priori and the local font classification method. The font classification uses ascenders, descenders, and serifs extracted from a word image. The gradient features of those sub-images are extracted, and used as an input to a neural network classifier to produce font classification results. The font classification determines 2-font styles (upright or slant), 3-font groups (serif, sans serif, or typewriter), and 7-font names (PostScript fonts such as Avant Garde, Helvetica, Bookman, New Century Schoolbook, Palatino, Times, or Courier). The proposed a priori and local font classification method allows an OCR system consisting of various font-specific character segmentation tools and various mono-font character recognizers.

  • PDF

Optimization of Slanted and Chirp IDT Configurations for Realizing and Propagating Surface Acoustic Wave with Wide Bandwidth (광대역 표면탄성파 구현을 위한 slanted 및 chirp IDT의 최적화)

  • Lee, Tae-Yoon;Fu, Chen;Lee, Kee-Keun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.12
    • /
    • pp.1730-1736
    • /
    • 2013
  • Slanted and chirp interdigital transducer(IDT) configurations were studied for generating the surface acoustic wave(SAW) with wide bandwidths on a piezoelectric substrate. These devices can be applied to manipulate optical path of light along the waveguide, ultimately used for optical switches and holographic image implementation. Prior to fabrication, the coupling of modes(COM) modeling and simulation were performed to extract optimal design parameters. The optimally designed wideband device showed wide bandwidth of 30MHz, low insertion loss of -25dB, and abrupt side suppression ratio (SSR). Several design conditions were determined during device implementation, such as slanted angle, aperture length, number of fingers, and central frequencies of IDTs. These factors were experimentally analyzed and described in details in this paper.

Image Interpolation using directional edge weight (방향성 에지 윤곽선 가중치를 이용한 영상 보간)

  • Lee, Ou-Seb;Kim, Hyeong-Kyo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.11 no.1
    • /
    • pp.26-31
    • /
    • 2010
  • We proposed a new directional edge based interpolation, DEBI, by combining two weighted directional information to reduce blurred edges and annoying artifacts. Four isotropic gradient masks are employed in defining edge directions and they are proven to hold a first order derivative relation with respect to a rotating coordinate. Two minimum gradients among four absolute directional results are shown to be sufficient to describe slant edges efficiently. Compared with widely used bilinear and bicubic interpolation methods, the proposed algorithm results in a noticeable improvement along edge area.