• Title/Summary/Keyword: Slamming Impact

Search Result 76, Processing Time 0.025 seconds

Damage Analysis of Bow-Flare Structure (선수 플레어 구조손상 해석)

  • 김용직;신기석;신찬호;강점문;김만수;김성찬;오수관;임채환;김대헌
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.3
    • /
    • pp.37-44
    • /
    • 2003
  • In rough seas, bow-flare regions of the sea-going ships are subject to high impact pressures due to the bow-flare slamming and panting. And many ships suffer structural damages in that region, even though they were built under the bow structure strengthening rules of the ship classes. So, a new design method for bow-flare structure is highly required. In this paper, bow-flare damage analysis is performed for 17 ships (total number of damage/non-damage data is 782). Based on this analysis, a new design standard and method for bow-flare structure (shell plate, frame and web frame) is proposed. 80.4% of the present damage/non-damage data were well-explained by this new design standard.

Towards development of a reliable fully-Lagrangian MPS-based FSI solver for simulation of 2D hydroelastic slamming

  • Khayyer, Abbas;Gotoh, Hitoshi;Falahaty, Hosein;Shimizu, Yuma;Nishijima, Yusuke
    • Ocean Systems Engineering
    • /
    • v.7 no.3
    • /
    • pp.299-318
    • /
    • 2017
  • The paper aims at illustrating several key issues and ongoing efforts for development of a reliable fully-Lagrangian particle-based solver for simulation of hydroelastic slamming. Fluid model is founded on the solution of Navier-Stokes along with continuity equations via an enhanced version of a projection-based particle method, namely, Moving Particle Semi-implicit (MPS) method. The fluid model is carefully coupled with a structure model on the basis of conservation of linear and angular momenta for an elastic solid. The developed coupled FSI (Fluid-Structure Interaction) solver is applied to simulations of high velocity impact of an elastic aluminum wedge and hydroelastic slammings of marine panels. Validations are made both qualitatively and quantitatively in terms of reproduced pressure as well as structure deformation. Several remaining challenges as well as important key issues are highlighted. At last, a recently developed multi-scale MPS method is incorporated in the developed FSI solver towards enhancement of its adaptivity.

A Development of Whipping Analysis Program for Ship Hulls (선체 휘핑 해석 전용 프로그램의 개발)

  • Seong-Whan Park;Jai-Kyung Lee;Sang-Heon Oh;Myung-Jae Song;Seung-Min Kwon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.3
    • /
    • pp.64-74
    • /
    • 2002
  • A special purposed program for ship hull strength analysis considering whipping phenomena is developed. In this program, the non-linear hydrodynamic impact force is considered using the momentum slamming theory and the hull girder is modeled as elastic body on the base of Timoshenko's beam theory. The numerical verifications are conducted in the view points that the effect of slamming impact force, the effect of hydro-elastic formulation, and the effect of various design parameters such as ship speed, wave amplitude, wave length and others. By the application of a real ship design process, the availability of the program is proved. This program has a GUI function for many I/O data process as well as the function to show the 2-D ship motion in the graphic window, and has other available functions for the whipping analysis.

CFD PARAMETRIC STUDY FOR 2D WATER ENTRY

  • Lee, H.H.;Rhee, S.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.191-195
    • /
    • 2009
  • A parametric study for for the water entry of a two dimensional symmetric wedge with deadrise angle of 10 degrees was carried out to find out the most dominant parameter. Water entry problem with constant velocity is simplified as the stationary wedge in the way of the upcoming water surface. The calculated impact loads showed that the effect of the viscosity was not so important in this problem. For a given grid system a suitable time step size can be found. The most sensitive parameter was found to be the grid size.

  • PDF

Numerical Experimentations on Flow Impact Phenomena for 2-D Wedge Entry Problem (2차원 쐐기형 구조물 입수 시 발생하는 유체 충격 현상에 대한 수치 실험적 연구)

  • Yum, Duek-Joon;Du, Hun;Kim, Young-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.8
    • /
    • pp.3374-3383
    • /
    • 2011
  • In this study, numerical analyses for slamming impact phenomena have been carried out using a 2-dimensional wedge shaped structure having finite deadrise angles. Fluid is assumed incompressible and entry speed of the structure is kept constant. Geo-reconstruct(or PLIC-VOF) scheme is used for the tracking of the deforming free surface. Numerical analyses are carried out for the deadrise angles of $10^{\circ}$, $20^{\circ}$ and $30^{\circ}$. For each deadrise angle, variations are made for the grid size on the wedge bottom and for the entry speed. The magnitude and the location of impact pressure and the total drag force, which is the summation of pressure distributed at the bottom of the structure, are analyzed. Results of the analyses are compared with the results of the Dobrovol'skaya similarity solutions, the asymptotic solution based on the Wagner method and the solution of Boundary Element Method(BEM).

Experimental Study on Impact Loads Acting on Free-falling Modified Wigley

  • Hong, Sa-Young;Kim, Young-Shik;Kyoung, Jo-Hyun;Hong, Seok-Won;Kim, Yong-Hwan
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.3
    • /
    • pp.151-159
    • /
    • 2012
  • The characteristics of an impact load and pressure were experimentally investigated. Drop tests were carried out using a modified Wigley with CB = 0.56. The vertical force, pressures, and vertical accelerations were measured. A 6-component load cell was used to measure the forces, piezo-electric sensors were used to capture the impact pressure, and strain-gauge type accelerometers were used to measure the vertical accelerations. A 50-kHz sampling rate was applied to capture the peak values. The repeatability of the measured data was confirmed and the basic characteristics of the impact load and pressure such as the linearity to the falling height were observed for all of the measurements. A simple formula was derived to extract the physical impact load from the measured force based on a simple mass-sensor-mass diagram, which was validated by comparing impact forces with existing data using the mathematical model of Faltinsen and Chezhian (2005). The effects of the elasticity of the model and change in acceleration during the water entry were investigated. It is interesting to observe that the impact loads occurred and reached peak values at the same time duration after water entry for all drop heights.

An Experimental Study on Shallow Water Effect in Slamming (천수에서의 슬래밍 현상에 대한 실험적 연구)

  • Kang, Hyo-Dong;Oh, Seung-Hoon;Kwon, Sun-Hong
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.60-66
    • /
    • 2009
  • This study presents an experimental investigation of the shallow water impact of a box type structure. The analysis was done based on the video images captured by a high speed camera, the flow field obtained by PIV (Particle Image Velocimetry), and pressure measurements in the divided region. The video images showed quite good agreement with the description given by Korobkin. The PIV measurements of the velocity field provided a clear view of the flow pattern for all three stages. The pressure was measured at the bottom of the tank with strain gauge type pressure gauges. The pressure measurements showed the characteristics of divided regions.

A Study on the Response of the Motions and Strength of Ships in Waves taking account of Non-linerities (비선형을 고려한 파랑중 선체 운동과 강도 응답에 관한 연구)

  • C.Y.,Kim;J.A.,Kim;S.S.,Kim;B.K.,Hong;D.M.,Bae
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.24 no.1
    • /
    • pp.51-66
    • /
    • 1987
  • In this paper, the authors investigate theoretically the motion and longitudinal strength of ships among waves talking account of the effects of nonlinearities such as the hull shape, bottom emergence, and hydrodynamic impact. Incidentally the ship is treated as an elastic beam in heading wave condition regarding characteristics of slamming and whipping-according to the variation in the range of a quarter length of the ship forward and the increase of the elastic modes up to 4-th vibration mode were investigated by the present theory. Calculations are performed for 97m container ship and its validity is confirmed by a series of model tests. Conclusions obtained are as follows; 1) Acceleration and pressure estimated by the present theory are in good accordance with experiments. 2) The present non-linear theory may be applied for estimating longitudinal bending moment of ships in slamming and whipping conditions. 3) In investigation of the characteristic in response according to shape variation for parts under draft and vow-flare in the range of a quarter length of the ship forward, dynamic responses due to the former were much more conspicuous than those due to the later. 4) In the maximum bending moment, the considering case up to 2-the mode are larger, about $10{\sim}15%$, than that up to 4-th mode.

  • PDF

A comparison study of water impact and water exit models

  • Korobkin, Alexander;Khabakhpasheva, Tatyana;Malenica, Sime;Kim, Yonghwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.1182-1196
    • /
    • 2014
  • In problems of global hydroelastic ship response in severe seas including the whipping problem, we need to know the hydrodynamic forces acting on the ship hull during almost arbitrary ship motions. In terms of ship sections, some of them can enter water but others exit from water. Computations of nonlinear free surface flows, pressure distributions and hydrodynamic forces in parallel with the computations of the ship motions including elastic vibrations of the ship hull are time consuming and are suitable only for research purposes but not for practical calculations. In this paper, it is shown that the slamming forces can be decomposed in two components within three semi-analytical models of water entry. Only heave motion is considered. The first component is proportional to the entry speed squared and the second one to the body acceleration. The coefficients in these two components are functions of the penetration depth only and can be precomputed for given shape of the body. During the exit stage the hydrodynamic force is proportional to the acceleration of the body and independent of the body shape for bodies with small deadrise angles.

Numerical investigation of solitary wave interaction with a row of vertical slotted piles on a sloping beach

  • Jiang, Changbo;Liu, Xiaojian;Yao, Yu;Deng, Bin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.530-541
    • /
    • 2019
  • To improve our current understanding of tsunami-like solitary waves interacting with a row of vertical slotted piles on a sloping beach, a 3D numerical wave tank based on the CFD tool $OpenFOAM^{(R)}$ was developed in this study. The Navier-Stokes equations were employed to solve the two-phase incompressible flow, combining with an improved VOF method to track the free surface and a LES model to resolve the turbulence. The numerical model was firstly validated by our laboratory measurements of wave, flow and dynamic pressure around both a row of piles and a single pile on a slope subjected to solitary waves. Subsequently, a series of numerical experiments were conducted to analyze the breaking wave force in view of varying incident wave heights, offshore water depths, spaces between adjacent piles and beach slopes. Finally, a slamming coefficient was discussed to account for the breaking wave force impacting on the piles.