• Title/Summary/Keyword: Slab joint

Search Result 223, Processing Time 0.024 seconds

Laboratory Performance Evaluation of Alternative Dowel Bar for Jointed Concrete Pavements (콘크리트 포장용 고내구성 대체 다웰바의 실내공용성 평가)

  • Park, Seong Tae;Park, Jun Young;Lee, Jae Hoon;Kim, Hyung Bae
    • International Journal of Highway Engineering
    • /
    • v.15 no.1
    • /
    • pp.23-36
    • /
    • 2013
  • PURPOSES: The problem under this circumstance is that the erosion not only drops strength of the steel dowel bar but also comes with volume expansion of the steel dowel bar which can reduce load transferring efficiency of the steel dowel bar. To avoid this erosion problem, alternative dowers bars are developed. METHODS: In this study, the bearing stresses between the FRP tube dowel bar and concrete slab are calculated and compared with its allowable bearing stress to check its structural stability in the concrete pavement. These comparisons are conducted with several cross-sections of FRP tube dowel bars. Comprehensive laboratory tests including the shear load-deflection test on a full-scale specimen and the full-scale accelerated joint concrete pavement test are conducted and the results were compared with those from the steel dowel bar. RESULTS: In all cross-sections of FRP tube dowel bars, computed bearing stresses between the FRP tube dowel bar and concrete slab are less than their allowable stress levels. The pultrusion FRP-tube dowel bar show better performance on direct shear tests on full-scale specimen and static compression tests at full-scale concrete pavement joints than prepreg and filament-winding FRP-tube dowel bar. CONCLUSIONS: The FRP tube dowel bars as alternative dowel bar are invulnerable to erosion that may be caused by moisture from masonry joint or bottom of the pavement system. Also, the pultrusion FRP-tube dowel bar performed very well on the laboratory evaluation.

Properties of High Impact Resisting Mortar based on Polyurethane (폴리우레탄계 고내충격성 모르타르의 물성치 연구)

  • Lee, Chin-Yong;Choi, Dong-Uk;Ha, Sang-Su;Kim, Dong-Wan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.645-648
    • /
    • 2008
  • The expansion joint is an important part of the bridge, but the failure is occurred on the non-shrinkage concrete which is connected to the slab of the bridge and the expansion joint, and the other problem is the release of anchors in expansion joint due to the impact and vibration during the driven car on the bridge, especially an overloaded car. In this study, to overcome the failure of non-shrinkage of concrete, high impact resisting mortar is developed. The high impact resisting mortar shall be a polyurethane material compounded with an aggregate system to develop excellent flexibility characteristics, high load bearing capacity.

  • PDF

A Study on the Structural Performance of Slab-column Joint at Flat Plate Structure Using ECC (고인성 시멘트 복합재를 활용한 플랫플레이트 구조의 슬래브-기둥 접합부 구조성능 연구)

  • Choi, Kwang-Ho;Park, Byung-Chun;Choi, Sung-Woo;Ryu, Deug-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.2
    • /
    • pp.209-216
    • /
    • 2017
  • One of the important considerations in structural designing the flat plate system is ensuring the resistance to punching shear caused by axial loads and the ductile ability to follow horizontal deformation under earthquake. In this study, the ECC (Engineered Cementitious Composite) has been placed in the critical section zone of punching shear at slab-column joint to improve ductility and the advanced details of shear reinforced area nearby critical section zone has been developed using stud and steel fiber. The shear performance tests were performed on the specimens with parameters of fiber type mixed with ECC, stud and steel fiber set into the shear reinforced area in which the failure pattern, joint strength, displacement and strain of the specimen were compared and analyzed. The test results showed that the strength and ductility of specimens with ECC applied to joint were better than those of RC flat plate system. Also, the shear reinforcement effect of stud and the ductility improvement of steel fiber concrete were confirmed in the shear reinforcement area.

Experimental Study on the Load Transfer Behavior of Steel Grid Composite Deck Joint (격자형 강합성 바닥판 이음부의 하중전달 거동에 관한 실험적 연구)

  • Shin, Hyun-Seop
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.4
    • /
    • pp.10-21
    • /
    • 2014
  • The joint of prefabricated steel grid composite deck is composed of concrete shear key and high-tension bolts. The flexural and shear strength of the joint were experimentally evaluated only by the bending and push-out test of the joint element. In this study the lateral load transfer behavior of the joint in deck structure system is experimentally evaluated. Several decks connected by the joint are prefabricated and loaded centrically and eccentrically. In the case of centrically loaded specimens, the analysis results show that for the same loading step the rotation angle of the joint with 4 high-tension bolts is larger than the case of the joint with 9 high-tension bolts. Consequently, flexural stiffness of deck and lateral load transfer decrease in the case of specimen with 4 high-tension bolts. But, in the case of eccentrically loaded specimens, it is found that there are no significant differences in the load transfer behavior. The further analysis results about the structural behavior of the joint show that lateral load transfer can be restricted by the load bearing capacity of the joint as well as punching shear strength of the slab. Furthermore, considering that high-tension bolts in the joint didn't reach to the yielding condition until the punching shear failure, increase in the number of high-tension bolts from 4 to 9 has a greater effect on the flexural stiffness of the joint and deck system than the strength of them.

Strut-Tie Model Approach Associated with 3-Dimensional Grid Elements for Design of Structural Concrete - (II) Validity Evaluation (3차원 격자요소를 활용한 콘크리트 구조부재의 스트럿-타이 모델 설계 방법 - (II) 타당성 평가)

  • Kim, Byung Hun;Yun, Young Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.437-446
    • /
    • 2014
  • In this study, the ultimate strengths of 13 slab-column joints and 51 torsional beams were evaluated to verify the validity of the strut-tie model approach presented in the companion paper. In addition, the design of the bridge pier subjected to multiple load combinations with longitudinal and lateral loads was conducted. The analysis results were compared with those by the provisions of BS 8110, ACI 318, and AASHTO-LRFD. The design results of the bridge pier were also compared with those by the provisions of ACI 318's sectional design method and AASHTO-LRFD's strut-tie model method.

Flexural Behavior of Continuous Composite Bridges with Precast Concrete Decks

  • Chung, Chul-Hun
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.4
    • /
    • pp.625-633
    • /
    • 2003
  • For the construction of open-topped steel box girder bridges, prefabricated concrete slab could offer several advantages over cast-in-situ deck including good quality control, fast construction, and elimination of the formwork for concrete slab casting. However, precast decks without reinforcements at transverse joints between precast slabs should be designed to prevent the initiation of cracking at the joints, because the performance of the joint is especially crucial for the integrity of a structural system. Several prestressing methods are available to introduce proper compression at the joints, such as internal tendons, external tendons and support lowering after shear connection. In this paper, experimental results from a continuous composite bridge model with precast decks are presented. Internal tendons and external tendons were used to prevent cracking at the joints. Judging from the tests, precast decks in negative moment regions have the whole contribution to the flexural stiffness of composite section under service loads if appropriate prestressing is introduced. The validity of the calculation of a cracking load fur serviceability was presented by comparing an observed cracking load and the calculated value. Flexural behavior of the continuous composite beam with external prestressing before and after cracking was discussed by using the deflection and strain data.

Soil Properties of Bedding Bone for Concrete Faced Rockfill Dam (콘크리트 표면차수벽형 석괴댐 지지층의 토질특성)

  • 배종순;성영두
    • Geotechnical Engineering
    • /
    • v.12 no.1
    • /
    • pp.47-62
    • /
    • 1996
  • The bedding zone which influence directly to the safety of dam is supporting the face slab under hydraulic load in concrete faced rockfill dam. In case that leakage is developed due to various ruptured joint or cracks of face slab and etc., the bedding zone should limit the leakage by low permeability and keep the internal stability. In this study for the proper coefficient of permeability various properties, such as gradation, dry density, performance of embankment work and etc. were analysed. The results from the large scale test of permeability and density are summerized as follows : 1. Coefficient of permeability is decreased clearly by increase of dry density. 2. The particles smaller than the No.4 strive( p,) greatly influences the permeability under dry density of 2.24t 1 m3. 3. In case of C.40 and p,40%, even if dry density decreased to 2.0t/m3, the permeability coefficient is assumed to u x1-scm/s and internal stability is abtained. 4. Generally in dam construction since dry density and uniformity coefficient of bedding zone were higher than 2.2t/m3 and 50 respectively p, of 30~40% is assumed to be suitable and permeability coefficient of below 1$\times$10-3cm l s is expectable.

  • PDF

Evaluation of Behavior of Jointed Concrete Pavement Considering Temperature Condition in a Tunnel by Finite Element Method (구조해석을 통한 터널내 줄눈 콘크리트 포장의 거동분석)

  • Ryu, Sung Woo;Park, JunYoung;Kim, HyungBae;Lee, Jaehoon;Cho, Yoon-Ho
    • International Journal of Highway Engineering
    • /
    • v.18 no.2
    • /
    • pp.19-27
    • /
    • 2016
  • PURPOSES: The behavior of a concrete pavement in a tunnel was investigated, based on temperature data obtained from the field and FEM analysis. METHODS: The concrete pavement in a tunnel was evaluated via two methods. First, temperature data was collected in air and inside the concrete pavement both outside and inside the tunnel. Second, FEM analysis was used to evaluate the stress condition associated with the slab thickness, joint spacing, dowel, and rock foundation, based on temperature data from the field. RESULTS : Temperature monitoring revealed that the temperature change in the tunnel was lower and more stable than that outside the tunnel. Furthermore, the temperature difference between the top and bottom of the slab was lower inside the tunnel than outside. FEM analysis showed that, in many cases, the stress in the concrete pavement in the tunnel was lower than that outside the tunnel. CONCLUSIONS : Temperature monitoring and the behavior of the concrete pavement in the tunnel revealed that, from an environmental point of view, the condition in the tunnel is advantageous to that outside the tunnel. The behavior in the tunnel was significantly less extreme, and therefore the concrete pavement in the tunnel could be designed more economically, than that outside the tunnel.

Design Review of Inter-Modal Terminal Platform for Temperature Load (온도하중을 고려한 인터모달 터미널 플랫폼의 설계 검토)

  • Kim, Kyoung-Su;Kim, Da-Ae;Kim, Heung-Rae;Hyun, Eun-Tack
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.5
    • /
    • pp.305-311
    • /
    • 2019
  • In this study, we examined the proper spacing between the expansion joints according to the temperature load of the inter-modal terminal platform infrastructure to implement a new inter-modal automated freight transport system, which we intend to introduce in Korea. To review the proper expansion joint spacing of the terminal platforms, we set the maximum expansion joint spacing according to the regional temperature changes using the equation proposed by the Federal Construction Council (FCC) of the United States. Then, the maximum displacement value, which was calculated through the structural analysis program, and the limit of the horizontal displacement of the building structure were compared. The proper expansion joint spacing was selected as the slab length at which the maximum displacement of the structure, due to temperature changes, was below the horizontal displacement limit. Based on the application of maximum expansion joint spacing for each region calculated through the FCC's suggestion, the maximum displacement that could occur within the limit of the lateral displacement of the structure was determined.

Improvement of Fatigue Model of Concrete Pavement Slabs Using Environmental Loading (환경하중을 이용하는 콘크리트 포장 슬래브 피로모형의 개선)

  • Park, Joo-Young;Lim, Jin-Sun;Kim, Sang-Ho;Jeong, Jin-Hoon
    • International Journal of Highway Engineering
    • /
    • v.13 no.4
    • /
    • pp.103-115
    • /
    • 2011
  • Concrete slab curls and warps due to the uneven distribution of temperature and moisture and as the result, internal stress develops within the slab. Therefore, environmental loads must be considered in addition to the traffic loads to predict the lifespan of the concrete pavement more accurately. The strength of the concrete slab is gradually decreases to a certain level at which fatigue cracking is generated by the repetitive traffic and environmental loadings. In this study, a new fatigue regression model was developed based on the results from previously performed studies. To verify the model, another laboratory flexural fatigue test program which was not used in the model development, was conducted and compared with the predictions of other existing models. Each fatigue model was applied to analysis logic of cumulative fatigue damage of concrete pavement developed in the study. The sensitivity of cumulative fatigue damage calculated by each model was analyzed for the design factors such as slab thickness, joint spacing, complex modulus of subgrade reaction and the load transfer at joints. As the result, the model developed in this study could reflect environmental loading more reasonably by improving other existing models which consider R, minimum/maximum stress ratio.