• Title/Summary/Keyword: Slab effect

검색결과 579건 처리시간 0.167초

Analytical and Experimental Studies on Partially Composite of Steel-Plate Girder Bridges Using Slab Anchors (바닥판 앵커를 사용한 플레이트거더교의 부분합성에 관한 해석 및 실험 연구)

  • Han, Sang Yun;Park, Nam Hoi;Yoon, Ki Young;Kang, Young Jong
    • Journal of Korean Society of Steel Construction
    • /
    • 제16권3호통권70호
    • /
    • pp.325-332
    • /
    • 2004
  • Cross sections of steel-plate girder bridges are divided into three cross sections of non-composite, partially composite, and fully composite sections, according to their composite characteristics. The Korean provision for the partially and fully composite sections specifies general usage of the stud of shear connectors, whereas the one for the non-composite section specifies empirical usage of slab anchors. However, the actual behavior of the cross sections of steel-plate girder bridges using slab anchors is close not to the non-composite action, but to the partially composite action. Therefore analytical and experimental studies on partial composites of steel-plate girder bridges using slab anchors are performed in this study. Intial stiffness of the slab anchor is obtained by the experimental study for the first time, and the composite characteristic of simple-span and two-span continuous steel-plate girder bridges is investigated by the finite element analyses for the second time. Based on the obtained initial stiffness, the reduction effect of tensile stresses in the concrete-slab on the intermediate support of the continuous bridge is also considered herein.

Experimental Studies on PSC Airpit-Slab with Fire Resistance Panel under Static and Dynamic Loads (내화패널이 부착된 프리캐스트 PSC 풍도슬래브의 정적/동적하중에 관한 실험연구)

  • Kim, Tae Kyun;Bae, Jeong;Choi, Heon;Min, In Gi
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제32권4A호
    • /
    • pp.245-253
    • /
    • 2012
  • In the longway tunnel and underground traffic road, the structure of transverse ventilation system is constructed by the airpit slab. In this study, the full scale specimens of the PSC airpit slab that attached fire resistance panel are performed the static and dynamic loading tests for evaluation of bending capacity. The first of all, it confirmed the evaluations about the fundamental efficiency of the fire resistance panel and PSC slab by the 3-point bending test and pull-off test. The tests are performed for evaluation of the bending resistance under ultimate static load and the bonded capacity under dynamic fatigue load. A fatigue test is performed for an investigation of the effect on wind pressure that is developed by transit of traffic. The damage or debonding on surface between fire resistance panel and PSC slab was not developed in dynamic fatigue load test, also the behavior of the specimens is very stable and the debonding of the fire resistance panel attached at the bottom surface of PSC slab was not developed in static load test, too. Therefore, the crack or debonding of the fire resistance panel will be not developed by external loads during the construction or completion of the precast fire resistance system.

Influence of Wave Chamber Slab on Wave Pressure on First and Second Wall of Perforated Caisson Breakwater (유수실 상부 덮개가 유공 케이슨 방파제의 전면벽 및 후면벽 파압에 미치는 영향)

  • Oh, Sang-Ho;Ji, Chang-Hwan;Oh, Young-Min;Jang, Se-Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제33권6호
    • /
    • pp.2317-2328
    • /
    • 2013
  • In this study, the effect of wave chamber slab on wave pressure along the first and second wall of the perforated caisson breakwater was investigated by performing physical experiment. The experiment was performed without and with the wave chamber slab of the perforated caisson by varying the front wall porosity. The discrepancy in magnitudes of the measured wave pressure along the both walls of the perforated caisson was apparent according to the existence of the wave chamber slab as significantly greater pressures were acquired for all the test cases when the wave chamber was closed upward by the slab. As a result, the magnitudes of the total wave force calculated by integration of the measured wave pressure also were much larger for the caisson breakwater having the wave chamber slab, exceeding the value based on the well known Takahashi's formula (Takahashi and Shimosako, 1994). With respect to the porosity of the front wall, meanwhile, higher pressures were obtained with a larger porosity, at both the first and second wall of the breakwater.

Evaluation of Blast Resistance of Slab-Column Connections According to the Confinement Effects and Drop Panel (슬래브-기둥 접합부의 구속도 및 드롭패널에 따른 방폭 성능 평가)

  • Lim, Kwang Mo;Lee, Joo Ha
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제37권2호
    • /
    • pp.451-457
    • /
    • 2017
  • The numerical analysis was conducted to evaluate the behavior of slab-column connection subjected to blast loads using LS-DYNA. The typical form of slab-interior column connection for analysis was considered as a reference specimen and the drop panel slab-interior column was designed to verify the effects of drop panel. The slab-column connections, which were composed of interior, edge and corner column, were additionally analyzed to compare their confinement effects of specimens. Analysis results were contained the failure shape of connection, behavior of member and so on. From the results, the blast-resistant capacities of slab-column connection would be enhanced by reinforcing the drop panel. In addition, the performance of connections could be improved, when the confinement effects were enhanced.

Comparative Analysis of Track-Bridge Interaction of Sliding Slab Track and Rail Expansion Joint for Long-Span Railway Bridge (장경간 철도 교량에 적용된 슬라이딩 궤도와 레일신축이음장치의 궤도-교량 상호작용 비교)

  • Lee, Kyoung Chan;Jang, Seung Yup;Lee, Jungwhee;Choi, Hyun Sung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • 제29권2호
    • /
    • pp.169-177
    • /
    • 2016
  • Sliding slab track system, which consists of low friction sliding layer between track slab and bridge deck, is recently devised to reduce track-bridge interaction effect of continuously welded rail(CWR) without applying special devices such as rail expansion joint(REJ). In this study, a series of track-bridge interaction analyses of a long-span bridge with sliding slab track and REJ are performed respectively and the results are compared. The bridge model includes PSC box girder bridge with 9 continuous spans, and steel-concrete composite girder bridge with 2 continuous spans. The total length of the bridge model is 1,205m, and the maximum spacing between the two fixed supports is 825m. Analyses results showed that the sliding slab track system is highly effective on interaction reduction since lower rail additional axial stress is resulted than REJ application. Additionally, horizontal reaction forces in fixed supports were also reduced compared to the results of REJ application. However, higher slab axial forces were developed in the sliding slab track due to the temperature load. Therefore, track slab section of the sliding slab track system should be carefully designed against slab axial forces.

Reinforcing effects of carbon fiber sheet by compressive strength differences on the RC slabs (도로교 RC 상판의 압축강도 차이에 따른 탄소섬유시트 보강효과)

  • Won, Chan Ho;Abe, Tadashi;Ahn, Tae-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • 제26권1호
    • /
    • pp.23-27
    • /
    • 2016
  • This study investigates the effect of carbon fiber sheet (CFS) and carbon fiber strand sheet (CFSS) on the fatigue resistance and compressive strength of RC slabs. The results of a comparison of the number of equivalent cycles between the CFS- and CFSS-reinforced RC slab test specimens obtained from a fatigue test indicate that the CFSS-reinforced RC slab has 1.2~1.3 times greater effect of reinforcement than the CFS-reinforced RC slab. This study also indicates that the fatigue resistance of the CFS- and CFSS-reinforced RC slabs is ensured when the compressive strength of concrete is not lower than the specified design strength prescribed in the Specifications for Highway Bridges but is not ensured when the compressive strength of concrete is lower than the specified design strength, although the effect of reinforcement is secured.

Measurement and Prediction of Long-term Deflection of Flat Plate Affected by Construction Load (시공하중에 의한 플랫 플레이트의 장기처짐 계측 및 해석)

  • Hwang, Hyeon-Jong;Park, Hong-Gun;Hong, Geon-Ho;Kim, Jae-Yo;Kim, Yong-Nam
    • Journal of the Korea Concrete Institute
    • /
    • 제26권5호
    • /
    • pp.615-625
    • /
    • 2014
  • Excessive long-term slab deflection caused by construction load is a critical issue for the design of concrete slabs, as long span flat plates become popular for tall buildings. In the present study, the effect of construction load causing early slab cracking on the long-term deflection was theoretically studied. On the basis of the result, a numerical analysis method was developed to predict the long-term deflection of flat plates. In the proposed method, immediate deflection due to slab cracking and long-term effect of creep and shrinkage were considered. To verify the construction load effect, long-term slab deflections were measured in actual flat plate buildings under construction. The results showed that the immediate deflection due to the construction load increased significantly the long-term deflection. The proposed method was used to predict the deflections of the buildings. The results were compared with the measurement results. The predictions agree well with the long-term deflections of flat plate affected by construction load.

A Study on the Continuation Effect of the PC Beam Bridge Reinforced by Span-Jointing of Slab (PC Beam 교의 슬래브 연속화 보강 효과에 대한 연구)

  • Sun, Chang-Ho;Lee, Jong-Seok;Kim, Ick-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • 제6권4호
    • /
    • pp.225-232
    • /
    • 2002
  • Recently the slab span-jointing method has been employed as one of the retrofit technologies to enhance the capacity of existing simple beam bridges in many cases. In general this method makes simple beam bridges behave like multi-span continuous bridges under service loads excluding self weight in company with external prestress force method in the field. In this paper the continuation effect has been studied for the retrofitted bridges by the experimental and numerical approaches. The results show that the deflections and stresses of members are reduced due to the increase of the total stiffness of bridge system and the efficiency of bridge continuation based on the slab span-jointing method is about 40 % when comparing with the case of continuous bridges.

The effect of temperature and relative humidity on concrete slab specimens with impressed current cathodic protection system

  • Jeong, Jin-A;Jin, Chung-Kuk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제37권3호
    • /
    • pp.260-265
    • /
    • 2013
  • Impressed current cathodic protection (ICCP) system is one of the most promising corrosion protection methods. The Effect of ICCP system can be changed at diverse conditions. Particularly, temperature and relative humidity plays a crucial role in CP (Cathodic Protection) effect. Thus, in this study, the influence of temperature and relative humidity on concrete specimens was investigated. Specimens were concrete slab type with a base of $400mm{\times}400mm$ and height of 70mm. To enhance the effect of CP system, seawater was used as an electrolyte. Used anode for ICCP system was mixed metal oxide (MMO) titanium. Test factors were natural potential, CP potential, CP current, and 4-hour depolarization potential. From this study, it could be confirm that CP potential and current were highly influenced by temperature and relative humidity.

Analysis Models of Concrete Slabs-on-Grade Considering Horizontal Resistance at Slab Bottom and Behavior under Thermal Loads (슬래브 하부 수평저항을 고려한 지반위의 콘크리트 슬래브 해석 모델 및 온도하중에 의한 거동 분석)

  • Kim Seong-Min;An Zu-Og
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • 제19권3호
    • /
    • pp.271-282
    • /
    • 2006
  • The behavior of the concrete slabs on grade considering the horizontal resistance at the slab bottom, which exists due to the shear resistance of the foundation and the friction between the slab and the foundation, has been investigated when the slabs-on-grade are subjected to the thermal load. Analytical formulations have been developed to include the effect of the horizontal resistance at the slab bottom employing the thin plate on an elastic foundation that is widely used for the analysis of concrete slabs-on-grade and rigid pavement systems. Finite element formulations have then been developed using the plate bending elements and the flat shell elements. The solutions from the analytical and numerical models have been compared and showed very good agreement. The sensitivity of the horizontal resistance to the stresses of the concrete slab has been investigated with various values of the slab thickness, elastic modulus, and vortical stiffness of the foundation when subjected to the temperature gradient between the top and bottom of the slab and the uniform temperature drop throughout the slab depth. The analysis results show that the horizontal resistance at the plate bottom can significantly affect the stresses of the slab when the thermal loads are applied.