• Title/Summary/Keyword: Slab bridge

Search Result 418, Processing Time 0.034 seconds

Evaluation for Relative Safety of RC Slab Bridge of Applying Limit State Design Code on Korean Highway Bridge (도로교설계기준 한계상태설계법을 적용한 RC슬래브교의 상대 안전도 평가)

  • Park, Jin-Woo;Hwang, Hoon-Hee;Kang, Sin-Oh;Cho, Kyung-Sik;Park, Woo-Jin
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.5
    • /
    • pp.41-48
    • /
    • 2013
  • This paper is intended to provide the background information and justification for Korean highway bridge design code(limit state design)(2012). Limit state design method calculates reliability index and probability of failure through the analysis of the reliability of the experimental database. It has become possible to perform the economical and consistent design by evaluating the safety of a structure quantitatively. In this paper, we used the design specifications of RC slab bridge of superstructure form of Road Design Manual in Part 5 bridge built in highway bridge. This study conducted structural analysis using the method of frame structure theory, design and analysis of bridge by limit state design method, the design code including various standards and Load model applied Korean highway bridge design code limit state design(KHBDC;2012). As a result, it analyzed the effect of safety through comparison. Showing effect of improvement the safety factor and comparing the value of the result, it is determined to be capable of economical design and safety. Furthermore, limit state design method was able to determine many redundant force of cross-section compared with existing design method. It is determined that it can reduce the overall amount because of the reduction of the cross-section and girder depth.

Study on the Shape of a Longitudinal Joint of the Slab-type Precast Modular Bridges (슬래브 형식 프리캐스트 모듈러교량의 종방향 연결부 형상 결정에 관한 연구)

  • Lee, Sang Yoon;Song, Jae Joon;Kim, Hyeong Yeol;Lee, Young Ho;Lee, Jung Mi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.5
    • /
    • pp.98-111
    • /
    • 2012
  • In this study, a longitudinal joint connection was proposed for the short-span slab-type precast modular bridges with rapid construction. The slab-type modular bridge consists of a number of precast slab modules and has the joint connection between the modules in the longitudinal direction of the bridge. The finite element based parameter analysis and the push-out test were conducted to design the shape and the dimensions of the longitudinal joint connection. Number of shear keys within the joint, height and depth of the shear key, tooth angle, and the spacing were considered as the design parameters. Using the local cracking load obtained from the analytical and experimental results, an efficiency factor was proposed to evaluate the effectiveness of the longitudinal joint connection. The dimensions of shear key were determined by comparing the efficiency factors.

A Study of Structural Behavior Analysis of Inegral and Semi-Integral Hybrid Slab Bridge (일체식 및 반일체식 복합슬래브 교량의 구조거동 분석에 관한 연구)

  • Choi, Young-Guk;Jang, Il-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.123-128
    • /
    • 2018
  • Girder bridges and slab bridges are equipped with a system consisting of a flexible joint unit, support, inverted T shaped abutment, and a separate connecting slab structure. These systems have problems such as an increase in cost due to frequent breakage of the expansion joints and a decrease in durability due to a structure with low moment redistribution. To improve these problems, propose Inegral and Semi-Integral Hybrid Slab Bridge and examine the safety through structural analysis. As a result of the review, Inegral and Semi-Integral Hybrid Slab Bridge was the section stiffness is small. but it is confirmed that the structural safety, ductility and flexibility are higher than existing bridges because the moment redistribution and the force transmission are surely performed.

A Study on the Use of Machine Learning Models in Bridge on Slab Thickness Prediction (머신러닝 기법을 활용한 교량데이터 설계 시 슬래브두께 예측에 관한 연구)

  • Chul-Seung Hong;Hyo-Kwan Kim;Se-Hee Lee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.5
    • /
    • pp.325-330
    • /
    • 2023
  • This paper proposes to apply machine learning to the process of predicting the slab thickness based on the structural analysis results or experience and subjectivity of engineers in the design of bridge data construction to enable digital-based decision-making. This study aims to build a reliable design environment by utilizing machine learning techniques to provide guide values to engineers in addition to structural analysis for slab thickness selection. Based on girder bridges, which account for the largest proportion of bridge data, a prediction model process for predicting slab thickness among superstructures was defined. Various machine learning models (Linear Regress, Decision Tree, Random Forest, and Muliti-layer Perceptron) were competed for each process to produce the prediction value for each process, and the optimal model was derived. Through this study, the applicability of machine learning techniques was confirmed in areas where slab thickness was predicted only through existing structural analysis, and an accuracy of 95.4% was also obtained. models can be utilized in a more reliable construction environment if the accuracy of the prediction model is improved by expanding the process

Evaluation of the Dynamic Stability of Subway Bridge in the Applying B2S Track (B2S궤도 적용에 따른 철도교량의 동적안정성 검토)

  • Kong, Sun-Yong;Kim, Sang-Jin;Baik, Chan-Ho
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.20-27
    • /
    • 2009
  • This paper presents an analytic study for replacement of the ballast track in existing subway bridge by the Precast slab panel(B2S) track. To evaluate the dynamic responses on application of B2S track, the time history analysis with the 3D modeling. A total of two models, which were one ballast track bridge and B2S track bridge, were used in the FE analysis. The results of this study show that the dynamic displacement and acceleration of the B2S track bridge were significantly reduced for a higher train speed, compared to the ballast track bridge. Also, the replacement of the ballast track bridge in existing subway bridge by the B2S track increased the structural safety of bridge and ensured sufficient dynamic stability and serviceability. As a result, the servicing subway bridge with B2S track system has need of the reasonable measures which could be reducing the static and dynamic response and improving the performance.

  • PDF

Analytical Study on I-beam of I-beam Grated Concrete slab (I 형강 격자 상판의 주부재 I형강에 대한 해석적 연구)

  • 박창규;김용곤;정영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.437-442
    • /
    • 2001
  • Recently, there have been increased much concerns about repair and rehabilitation works for aged concrete structures. In particular, it is known that due to repeated overburden vehicle there are significantly increasing number of aged concrete bridge slabs, which are strongly needed to construct and rehabilitate by innovative construction method. The objective of this research is to develop the new construction method of concrete slab in bridge structure, which can contribute to minimize the traffic congestion during the repair and rehabilitation works of aged concrete slab, and can also sufficiently assure the quality through the minimization of in-situ works at the site. I-beams with punch holes, which are substituted instead of main reinforcing steels in concrete slabs, will be manufactured in accordance with the specification in the factory. and will be preassembled into the Panel. After erecting the preassembled panels in the site, concrete will be poured into the slab panel. This research is to investigate physical properties of I-Beam with punch holes itself through static and fatigue test with rational numerical analysis Finally this research is to suggest reformed I-beam through the numerical analysis.

  • PDF

A Structural Performance Test of Reinforced Concrete Bridge Slab with Inverted-T Girder (Inverted-T형 거더 슬래브의 구조성능 시험)

  • Lee, Yeon Hun;Oh, Seung Hyun;Lee, Jong Kwan;Chung, Young Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.2A
    • /
    • pp.51-58
    • /
    • 2011
  • The objective of this research aims at improving the structural and economical efficiency of small and medium-span reinforced concrete bridge slab with the Inverted-T girders (hereinafter, called as IT). This IT method has an advantage over minimizing the construction process which could cause environmental pollution and traffic congestion. Especially it is thought that this new composite bridge slab with IT girders has better aesthetic view and visibility than existing old bridges, and is also a good methodology to solve labor shortage problems due to coming aging society. Therefore, this IT method should be one of very effective construction technologies to improve the constructibility and to reduce the construction cost.

An Experimental Study on the Flexural Fatigue Fracture Behavior of RC Slab of Widened Bridge (교량 확폭시 RC 상판 접합부의 휨 피로파괴거동에 관한 실험적 연구)

  • 박영훈;전준창;조병완;장동일
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.04a
    • /
    • pp.13-18
    • /
    • 1994
  • Most widened bridges have been constructed by the joining-construction method that makes new and existing bridge structurally single structure. However, joing-construction method has several problems in design and construction viewpoint. Therefore, this study is conducted in order to investigate structural behavior of widened RC slab and traffic-induced vibration of existing bridge during placing and curing of new concrete by the prototype flexural fatigue test. From the results of this study, it is shown that stress-concentration and slip occur between concrete and reinforcing rod at joint section but the reduction of load carrying capacity and of fatigue strength is negligible according to the traffic-induced vibration as well as the difference of construction method. A reasonable construction method for the bridge widening which takes into account the effects of the traffic-induced vibration and S-N curve for the widened bridge are also proposed.

  • PDF

The Fatigue Performance Evaluation of Concrete Specimen by Using Mineral Admixture (혼화재 사용에 따른 콘크리트 시험체의 피로성능 평가)

  • Kim, Doo-Hwan;Baek, Kyung-Su
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.5
    • /
    • pp.39-43
    • /
    • 2010
  • The surfacing of bridge-decks are object to secure trafficability and to protect bridge face from impact load of traffic volume and other external conditions. But the deformation of pavements and cracks happen due to the damage of the bridge-decks surfacing from the increase of the traffic, short maintenance period and continuous vibration of bridge. This test is to make the 3-type high performance concrete that has different mixing ratio and is added the blast furnace slag, fly ash and silica respectively, and to compare 3-type high performance concrete of normal high strength concrete of $400kgf/cm^2$ strength through the static loading test and fatigue test. And test specimen is united floor slab and pavement for the durability of bridge.

Design approach for a FRP structural formwork based steel-free modular bridge system

  • Cheng, Lijuan;Karbhari, Vistasp M.
    • Structural Engineering and Mechanics
    • /
    • v.24 no.5
    • /
    • pp.561-584
    • /
    • 2006
  • The paper presents results of parametric studies, and an overall approach for the design of a modular bridge system which incorporates a steel-reinforcement free concrete slab cast on top of carbon FRP stiffened deck panels which act as both structural formwork and flexural reinforcement, spanning between hollow box type FRP girders. Results of the parametric studies are highlighted to elucidate important relationships between critical configurational parameters and empirical equations based on numerical studies are presented. Results are discussed at the level of the individual deck and girder components, and as a slab-on-girder bridge system. An overall design methodology for the components and bridge system including critical performance checks is also presented.