• Title/Summary/Keyword: Sky park

Search Result 279, Processing Time 0.025 seconds

Mystery of the Most Isolated Globular Cluster in the Local Universe

  • Jang, In Sung;Lim, Sungsoon;Park, Hong Soo;Lee, Myung Gyoon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.68.2-68.2
    • /
    • 2012
  • We present a discovery of two new globular clusters in the Hubble Space Telescope archive images of the M81 group. They are located much farther from both M81 and M82 in the sky, compared with previously known star clusters in these galaxies. Both clusters show that higher luminosity and larger effective radius than typical globular clusters in Milky Way and M81. Using the available spectroscopic data provided by the Sloan Digital Sky Survey, we derive a low metallicity with [Fe/H] ${\approx}$ -2.3 and an old age ~14 Gyr for GC-2. The I-band magnitude of the tip of the RGB for GC-1 is consistent with that of the halo stars in the GC-1 and GC-2 field. However, that of GC-2 is 0.26 mag fainter than its field. It shows that GC-2 is about 400 kpc behind the M81 halo along our line of sight. The deprojected distance to GC-2 from M81 is much larger than any other known globular clusters in the local universe. We discuss the possible scenarios to explain the existence of globular cluster in such an extremely isolated environment.

  • PDF

Implementation of Virtual Maritime Environment for LWIR Homing Missile Test (원적외선 호밍 유도탄 시험을 위한 가상 해상 환경의 구현)

  • Park, Hyeryeong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.185-194
    • /
    • 2016
  • It is essential for generating the synthetic image to test and evaluate a guided missile system in the hardware-in-the-loop simulation. In order to make the evaluation results to be more reliable, the extent of fidelity and rendering performance of the synthetic image cannot be left ignored. There are numerous challenges to simulate the LWIR sensor signature of sea surface depending on the incident angle, especially in the maritime environment. In this paper, we investigate the key factors in determining the apparent temperature of sea surface and propose the approximate formula consisting of optical characteristics of sea surface and sky radiance. We find that the greater the incident angle increases, the larger the reflectivity of sea surface, and the greater the water vapor concentration in atmosphere increases, the larger the amount of sky radiance. On the basis of this information, we generate the virtual maritime environment in LWIR region using the SE-WORKBENCH, physically based rendering software. The margin of error is under seven percentage points.

Status of KASI's Contribution to SPHEREx

  • Jeong, Woong-Seob;Yang, Yujin;Park, Sung-Joon;Pyo, Jeonghyun;Jo, Youngsoo;Kim, Il-Joong;Bang, Seungcheol;Lee, Bomee
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.53.1-53.1
    • /
    • 2021
  • The KASI team are participating in the NASA MIDEX mission (PI Institute: Caltech), the all-sky infrared spectro-photometric surveyor SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization, and Ices Explorer). The SPHEREx will provide us the first all-sky infrared spectro-photometric data set to probe the origin of our Universe, to explore the origin and evolution of galaxies, and to explore whether planets around other stars could harbor life. After the project PDR (Preliminary Design Review) was successfully passed on the last September, the fabrication of flight hardware is in progress. As an international partner, KASI deeply involved in all fields of projects, i.e., the development of calibration facility, the construction of data reduction modules and the science studies for the SPHEREx. After finishing the fabrication and test of calibration facility for the SPHEREx in this year, it will be delivered to Caltech. Here, we report the status of the SPHEREx project and the progress in the Korean participation.

  • PDF

Near-Infrared Imaging Spectroscopic Survey in Space

  • Jeong, Woong-Seob;Park, Sung-Joon;Moon, Bongkon;Lee, Dae-Hee;Park, Won-Kee;Lee, Duk-Hang;Ko, Kyeongyeon;Pyo, Jeonghyun;Kim, Il-Joong;Park, Youngsik;Nam, Ukwon;Kim, Minjin;Ko, Jongwan;Song, Yong-Seon;Im, Myungshin;Lee, Hyung Mok;Lee, Jeong-Eun;Shin, Goo-Hwan;Chae, Jangsoo;Matsumoto, Toshio
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.54.3-54.3
    • /
    • 2015
  • To probe the star formation in local and early Universe, the NISS with a capability of imaging spectroscopy in the near-infrared is being developed by KASI. The main scientific targets are nearby galaxies, galaxy clusters, star-forming regions and low background regions. The off-axis optical design of the NISS with 15cm aperture was optimized to obtain a wide field of view (FoV) of $2deg.{\times}2deg.$ as well as a wide spectral coverage from 0.9 to $3.8{\mu}m$. The opto-mechanical structure was designed to be safe enough to endure in both the launching condition and the space environment. The dewar will operate $1k{\times}1k$ infrared sensor at 80K stage. The NISS will be launched in 2017 and explore the large areal near-infrared sky up to $200deg.^2$ in order to get both spatial and spectral information for astronomical objects. As an extension of the NISS, KASI is planning to participate in a new small space mission together with NASA. The promising candidate, SPHEREx (Spectro-Photometer for the History of the Universe Epoch of Reionization, and Ices Explorer) is an all-sky survey satellite designed to reveal the origin of the Universe and water in the planetary systems and to explore the evolution of galaxies. Though the survey concept is similar to that of the NISS, the SPHEREx will perform the first near-infrared all-sky imaging spectroscopic survey with the wider spectral range from 0.7 to $5{\mu}m$ and the wider FoV of $3.5deg.{\times}7deg.$ Here, we report the current status of the NISS and introduce new mission for the near-infrared imaging spectroscopic survey.

  • PDF

Intertidal DEM Generation Using Satellite Radar Interferometry (인공위성 레이더 간섭기술을 이용한 조간대 지형도 작성에 관한 연구)

  • Park, Jeong-Won;Choi, Jung-Hyun;Lee, Yoon-Kyung;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.1
    • /
    • pp.121-128
    • /
    • 2012
  • High resolution intertidal DEM is a basic material for science research like sedimentation/erosion by ocean current, and is invaluable in a monitoring of environmental changes and practical management of coastal wetland. Since the intertidal zone changes rapidly by the inflow of fluvial debris and tide condition, remote sensing is an effective tool for observing large areas in short time. Although radar interferometry is one of the well-known techniques for generating high resolution DEM, conventional repeat-pass interferometry has difficulty on acquiring enough coherence over tidal flat due to the limited exposure time and the rapid changes in surface condition. In order to overcome these constraints, we tested the feasibility of radar interferometry using Cosmo-SkyMed tandem-like one-day data and ERS-ENVISAT cross tandem data with very short revisit period compared to the conventional repeat pass data. Small temporal baseline combined with long perpendicular baseline allowed high coherence over most of the exposed tidal flat surface in both observations. However the interferometric phases acquired from Cosmo-SkyMed data suffer from atmospheric delay and changes in soil moisture contents. The ERS-ENVISAT pair, on the other hand, provides nice phase which agree well with the real topography, because the atmospheric effect in 30-minute gap is almost same to both images so that they are cancelled out in the interferometric process. Thus, the cross interferometry with very small temporal baseline and large perpendicular baseline is one of the most reliable solutions for the intertidal DEM construction which requires very accurate mapping of the elevation.

Adaptive Segmentation Approach to Extraction of Road and Sky Regions (도로와 하늘 영역 추출을 위한 적응적 분할 방법)

  • Park, Kyoung-Hwan;Nam, Kwang-Woo;Rhee, Yang-Won;Lee, Chang-Woo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.7
    • /
    • pp.105-115
    • /
    • 2011
  • In Vision-based Intelligent Transportation System(ITS) the segmentation of road region is a very basic functionality. Accordingly, in this paper, we propose a region segmentation method using adaptive pattern extraction technique to segment road regions and sky regions from original images. The proposed method consists of three steps; firstly we perform the initial segmentation using Mean Shift algorithm, the second step is the candidate region selection based on a static-pattern matching technique and the third is the region growing step based on a dynamic-pattern matching technique. The proposed method is able to get more reliable results than the classic region segmentation methods which are based on existing split and merge strategy. The reason for the better results is because we use adaptive patterns extracted from neighboring regions of the current segmented regions to measure the region homogeneity. To evaluate advantages of the proposed method, we compared our method with the classical pattern matching method using static-patterns. In the experiments, the proposed method was proved that the better performance of 8.12% was achieved when we used adaptive patterns instead of static-patterns. We expect that the proposed method can segment road and sky areas in the various road condition in stable, and take an important role in the vision-based ITS applications.

Development of the Cloud Monitoring Program using Machine Learning-based Python Module from the MAAO All-sky Camera Images (기계학습 기반의 파이썬 모듈을 이용한 밀양아리랑우주천문대 전천 영상의 운량 모니터링 프로그램 개발)

  • Gu Lim;Dohyeong Kim;Donghyun Kim;Keun-Hong Park
    • Journal of the Korean earth science society
    • /
    • v.45 no.2
    • /
    • pp.111-120
    • /
    • 2024
  • Cloud coverage is a key factor in determining whether to proceed with observations. In the past, human judgment played an important role in weather evaluation for observations. However, the development of remote and robotic observation has diminished the role of human judgment. Moreover, it is not easy to evaluate weather conditions automatically because of the diverse cloud shapes and their rapid movement. In this paper, we present the development of a cloud monitoring program by applying a machine learning-based Python module "cloudynight" on all-sky camera images obtained at Miryang Arirang Astronomical Observatory (MAAO). The machine learning model was built by training 39,996 subregions divided from 1,212 images with altitude/azimuth angles and extracting 16 feature spaces. For our training model, the F1-score from the validation samples was 0.97, indicating good performance in identifying clouds in the all-sky image. As a result, this program calculates "Cloudiness" as the ratio of the number of total subregions to the number of subregions predicted to be covered by clouds. In the robotic observation, we set a policy that allows the telescope system to halt the observation when the "Cloudiness" exceeds 0.6 during the last 30 minutes. Following this policy, we found that there were no improper halts in the telescope system due to incorrect program decisions. We expect that robotic observation with the 0.7 m telescope at MAAO can be successfully operated using the cloud monitoring program.

Performance Test of the Boltwood Cloud Sensor for the Meteorological Condition of Optical Satellite Observation (위성 광학관측 가능 기상상태 판단을 위한 Boltwood 구름센서 성능 시험)

  • Bae, Youngho;Yoon, Joh-Na;Jo, Jung Hyun;Moon, Hong-Kyu;Choi, Young-Jun;Yim, Hong-Suh;Park, Youngsik;Park, Sun-Youp;Park, Jang-Hyun;Choi, Jin;Kim, Myung-Jin;Kim, Jihye
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.3
    • /
    • pp.32-40
    • /
    • 2013
  • The Boltwood Cloud Sensor is meteorological sensor that is used to estimate an amount of clouds in the sky. This sensor will be installed for OWL(Optical Wide-field patroL) telescope and observatory system of Korea Astronomy and Space Science. Before applying this sensor to an observatory system, we performed test observations at Chungbuk University Observatory at Jincheon, Chungbuk. During the test run, a significant correlation between air temperature difference and the number of visible stars recorded in the CCD frames has not been found. This preliminary result can be attributed to test environment of the observation and our lack of knowledge on calculation algorithm as well as the hardware system of the Boltwood Cloud Sensor.In this paper, we present the procedure and the result of the performance test employing the cloud sensor.

Comparison of Differences on Microclimatic Factors and Human Thermal Sensation between in situ Measurement and Computer Modeling (실측과 컴퓨터 모델링을 통한 미기후 요소 및 인간 열환경지수의 차이 비교 분석)

  • Park, Sookuk;Kong, Hak-Yang;Kang, Hoon
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.1
    • /
    • pp.43-52
    • /
    • 2020
  • For investigating restriction in the use of computer modeling results without adjusting them with measured data, this study analyzed and compared microclimatic aspects and human thermal sensation between in situ measurement and computer modeling using ENVI-met in and around a small urban park of downtown Changwon in May, 2012. In the results, ENVI-met underestimated air temperatures and wind speeds than the measured ones and overestimated relative humidities. In the radiation analysis, ENVI-met overestimated solar radiation from the sky hemisphere and terrestrial radiation from the ground hemisphere and underestimated terrestrial radiation from the sky hemisphere. Also, the differences of mean radiant temperatures with the measured ones reached up to 19.6℃ which could create an 1.2 PMV difference. ENVI-met overestimated up to 2.3 PMV and 4℃ UTCI at 12:00. The difference was shown clearly in PMV than in UTCI. Therefore, when computer modeling is used in urban microclimate and human thermal sensation (comfort) studies the modeling results should be compared with measured data and adjusted adequately to adopt the results to urban and landscape planning and design.

KAISTSAT-4 : A Progress Report

  • Gyeong-Uk Min;Gwang-Seon Yu;Dae-Hui Lee;Jin-Geun Lee;Seung-Han O;In-Su Yuk;Gwang-Il Seon;Ho Jin;Jang-Hyeon Park
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.04a
    • /
    • pp.51-51
    • /
    • 2004
  • KAISTSAT-4 is to be launched in August 2003 into an orbit at 800 km altitude with the intended mission shared between astrophysics and space physics. The primary objective of its astrophysics mission is to provide spectral sky survey data of hot Galactic plasmas in the far-ultraviolet wavelength range. Far-Ultraviolet Imaging Spectrograph (FIMS) is sensitive to emission line fluxes in 900 - 1175 $\AA$ and 1335 - 1750 $\AA$. (omitted)

  • PDF