• Title/Summary/Keyword: Skirt profile

Search Result 15, Processing Time 0.022 seconds

Analysis of the Effects of Bore Clearance Due to Skirt Profile Changes on the Piston Secondary Movements

  • Jang, Siyoul
    • KSTLE International Journal
    • /
    • v.3 no.2
    • /
    • pp.84-89
    • /
    • 2002
  • Clearance movements of engine piston are very related to the piston impact to the engine block as well as many tribological problems. Some of the major parameters that influence these kinds of performances are piston profiles, piston offsets and clearance magnitudes. In our study, computational investigation is performed about the piston movements in the clearance between piston and cylinder liner by changing the skirt profiles and piston offsets. Our results show that curved profile and more offset magnitude to thrust side have better performance that has low side impact during the engine cycle.

Analysis of Frictional Power Loss Due to the Effects of Elastic Deformation in the Piston Skirt Profile (탄성변형을 고려한 피스톤 스커트의 마찰 손실 해석)

  • 조준행;장시열
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.385-396
    • /
    • 2000
  • The secondary motion of piston occurs due to the transient forces and moments in the clearances between piston skirt and cylinder liner The motions are very related to the skirt profile and the magnitude of piston-pin offset. Above all, the elastic deformation is another major effect on the piston secondary motion that has not been considered in the previous researches. In this work, the effects of elastic deformation of the piston skirt on the secondary piston motion are studied for the frictional power loss by using commercial softares, PISDYN and ANSYS.

  • PDF

Friction Characteristics of piston Skirt Parametric Investigation

  • Cho, Myung-Rae;Kim, Jee-Woon;Moon, Tae-Sun;Han, Dong-Chul
    • KSTLE International Journal
    • /
    • v.3 no.1
    • /
    • pp.1-6
    • /
    • 2002
  • The purpose of this paper is to investigate the effects of design parameters on the friction loss in piston skirt. An analytical model to describe the friction characteristics of piston skirt has been presented, which is based on the secondary motion of piston and mixed lubrication theory, It could be shown that the skirt friction closely depends on the side force acted on the piston pin. The side force is inf1uenced by cylinder pressure at low engine speed, but by inertia force at high engine speed. The usage of extensive skirt area and low weight piston is effective to reduce the friction loss at high speed. The low viscosity oil considerably decreases viscous friction as engine speed increases, but it increases boundary friction at low engine speed. From the parametric study, it is found that the skirt axial profile is the most important design parameter related to the reduction of skirt friction.

The Effects of Surface Porfiles and Coatings on the Tribological Behaviors of the Surfaces of Piston Skirt (피스톤 스커트 표면의 트라이볼로지 거동에 미치는 표면형상과 코팅의 영향)

  • Cho, Dae-Hyun;Chung, Soon-Oh;Won, Young-Duck;Han, Man-Cheol;Lee, Young-Ze
    • Tribology and Lubricants
    • /
    • v.24 no.3
    • /
    • pp.122-128
    • /
    • 2008
  • To reduce the friction losses and the wear amounts in the piston assembly two methods were proposed. One is the modification of surface profile of the skirt part. The surface coating is another method to protect the sliding surfaces. To modify the profile of the skirt surfaces the surfaces were ground to have three different shapes of profiles. Also, several coatings, such as graphite, TiN, and $MoS_2$, and DLC, were used to protect the surfaces of the piston skirts. The specimens of the skirt and the cylinder bores were tested with the reciprocating wear tester. SAE 5W40 engine oil was used in boundary lubrication regime. Among several coatings the graphite and DLC coatings were very effective to reduce the friction forces. Especially, DLC film represented much better tribological performances than the others. The friction coefficient of the graphite coating was the lowest, but the graphite coating was not effective to protect the surfaces.

EFFECTS OF SKIRT PROFILES ON THE PISTON SECONDARY MOVEMENTS BY THE LUBRICATION BEHAVIORS

  • Jang, S.;Cho, J.
    • International Journal of Automotive Technology
    • /
    • v.5 no.1
    • /
    • pp.23-31
    • /
    • 2004
  • Secondary movements of piston in the bore clearance are closely related to the side impact to the engine block as well as many tribological problems. Some of the major parameters that influence these kinds of movements are piston profile shapes (barrel and flat), piston pin offsets and the magnitudes of bore clearances. In our study, computational investigations are performed about the piston movements in the bore clearance by changing the skirt profiles and piston offsets. In this work, it is found that curved profile and larger offset magnitude to thrust side provide better performance that has low side impact during the engine cycle.

Thermal Stress at the Junction of Skirt to Head in Hot Pressure Vessel (고온 수직형 압력용기 Skirt 부의 열응력에 관한 연구)

  • 한명수;한종만;조용관
    • Journal of Welding and Joining
    • /
    • v.16 no.2
    • /
    • pp.111-121
    • /
    • 1998
  • It is well recognized that a excessive temperature gradient from the junction of head to skirt in axial direction in a hot pressure vessel can cause unpredicted high thermal stress at the junction and/or in axial direction of a skirt. this thermal stress resulting from axial thermal gradient may be a major cause of unsoundness of structural integrity. In case of cyclic operation of hot pressure vessels, the thermal stress becomes one of the primary design consideration because of the possibility of fracture as a result of cyclic thermal fatigue and progressively incremental plastic deformation. To perform thermal stress analysis of the junction and cylindrical skirt of a vessel, or, at least, to inspect quantitatively the magnitude and effect of thermal stress, the temperature profile of the vessel and skirt must be known. This paper demonstrated the temperature distribution and thermal stress analysis for the junction of skirt to head using F.E. analysis. Effect of air pocket in crotch space was quantitatively investigated to minimize the temperature gradient causing the thermal stress in axial direction. Effect of the skirt height on thermal stresses was also studied. Analysis results were compared with theoretical formulas to verify th applicability to the strength calculation in design field.

  • PDF

Friction Power Loss Reduction for a Marine Diesel Engine Piston (박용엔진 피스톤 스커트 프로파일 변경에 의한 마찰손실(FMEP) 저감 연구)

  • An, Sung Chan;Lee, Sang Don;Son, Jung Ho;Cho, Yong Joo
    • Tribology and Lubricants
    • /
    • v.32 no.4
    • /
    • pp.132-139
    • /
    • 2016
  • The piston of a marine diesel engine works under severe conditions, including a combustion pressure of over 180 bar, high thermal load, and high speed. Therefore, the analyses of the fatigue strength, thermal load, clamping (bolting) system and lubrication performance are important in achieving a robust piston design. Designing the surface profile and the skirt ovality carefully is important to prevent severe wear and reduce frictional loss for engine efficiency. This study performs flexible multi-body dynamic and elasto-hydrodynamic (EHD) analyses using AVL/EXCITE/PU are performed to evaluate tribological characteristics. The numerical techniques employed to perform the EHD analysis are as follows: (1) averaged Reynolds equation considering the surface roughness; (2) Greenwood_Tripp model considering the solid_to_solid contact using the statistical values of the summit roughness; and (3) flow factor considering the surface topology. This study also compares two cases of skirt shapes with minimum oil film thickness, peak oil film pressure, asperity contact pressure, wear rate using the Archard model and friction power loss (i.e., frictional loss mean effective pressure (FMEP)). Accordingly, the study compares the calculated wear pattern with the field test result of the piston operating for 12,000h to verify the quantitative integrity of the numerical analysis. The results show that the selected profile and the piston skirt ovality reduce friction power loss and peak oil film pressure by 7% and 57%, respectively. They also increase the minimum oil film thickness by 34%.

Analysis of Frictional Power Loss by the Effects of Piston Skirt Profiles (피스톤 스커트 형상에 따른 마찰 손실 해석)

  • 조준향;이준경;장시열
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.06a
    • /
    • pp.227-236
    • /
    • 2000
  • The secondary motion of piston greatly influences the dynamic and frictional performances of an engine. The motion is very related to the clearance, sliding velocity and skirt profile, etc. In our work, piston dynamics is analyzed with the commercial analysis software, PISDYN by Ricardo Consultant Engineers, Inc. The effects of profiles with piston pin offsets are studied regarding the secondary motion of piston and several results are compared.

  • PDF

Study on the Clearance Design for Low Side Impacts of Engine Piston

  • Cho, Joon-Haeng;Jang, Si-Youl
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.427-428
    • /
    • 2002
  • Clearance movements of engine piston are regarded very important because they cause impact vibrations as well as many tribological problems. Some of the major parameters that influence these kinds of performances are piston profiles, piston offsets and clearance magnitudes. In our study. computational investigation is performed about the piston movements in the clearance between piston and cylinder liner by changing the skirt profiles and piston offsets. Our results show that curved profile and more offset to thrust side have better performance with low side impact during the engine cycle.

  • PDF