• 제목/요약/키워드: Skip-Gram

검색결과 23건 처리시간 0.023초

Sentence model based subword embeddings for a dialog system

  • Chung, Euisok;Kim, Hyun Woo;Song, Hwa Jeon
    • ETRI Journal
    • /
    • 제44권4호
    • /
    • pp.599-612
    • /
    • 2022
  • This study focuses on improving a word embedding model to enhance the performance of downstream tasks, such as those of dialog systems. To improve traditional word embedding models, such as skip-gram, it is critical to refine the word features and expand the context model. In this paper, we approach the word model from the perspective of subword embedding and attempt to extend the context model by integrating various sentence models. Our proposed sentence model is a subword-based skip-thought model that integrates self-attention and relative position encoding techniques. We also propose a clustering-based dialog model for downstream task verification and evaluate its relationship with the sentence-model-based subword embedding technique. The proposed subword embedding method produces better results than previous methods in evaluating word and sentence similarity. In addition, the downstream task verification, a clustering-based dialog system, demonstrates an improvement of up to 4.86% over the results of FastText in previous research.

단어 의미와 자질 거울 모델을 이용한 단어 임베딩 (A Word Embedding used Word Sense and Feature Mirror Model)

  • 이주상;신준철;옥철영
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제23권4호
    • /
    • pp.226-231
    • /
    • 2017
  • 단어 표현은 기계학습을 사용하는 자연어 처리 분야에서 중요하다. 단어 표현은 단어를 텍스트가 아닌 컴퓨터가 분별할 수 있는 심볼로 표현하는 방법이다. 기존 단어 임베딩은 대량의 말뭉치를 이용하여 문장에서 학습할 단어의 주변 단어를 이용하여 학습한다. 하지만 말뭉치 기반의 단어 임베딩은 단어의 등장 빈도수나 학습할 단어의 수를 늘리기 위해서는 많은 양의 말뭉치를 필요로 한다. 본 논문에서는 말뭉치 기반이 아닌 단어의 뜻풀이와 단어의 의미 관계(상위어, 반의어)를 이용하며 기존 Word2Vec의 Skip-Gram을 변형한 자질거울모델을 사용하여 단어를 벡터로 표현하는 방법을 제시한다. 기존 Word2Vec에 비해 적은 데이터로 많은 단어들을 벡터로 표현 가능하였으며 의미적으로 유사한 단어들이 비슷한 벡터를 형성하는 것을 확인할 수 있다. 그리고 반의어 관계에 있는 두 단어의 벡터가 구분되는 것을 확인할 수 있다.

워드 임베딩과 딥러닝 기법을 이용한 SMS 문자 메시지 필터링 (SMS Text Messages Filtering using Word Embedding and Deep Learning Techniques)

  • 이현영;강승식
    • 스마트미디어저널
    • /
    • 제7권4호
    • /
    • pp.24-29
    • /
    • 2018
  • 딥러닝에서 자연어 처리를 위한 텍스트 분석 기법은 워드 임베딩을 통해 단어를 벡터 형태로 표현한다. 본 논문에서는 워드 임베딩 기법과 딥러닝 기법을 이용하여 SMS 문자 메시지를 문서 벡터로 구성하고 이를 스팸 문자 메시지와 정상적인 문자 메시지로 분류하는 방법을 제안하였다. 유사한 문맥을 가진 단어들은 벡터 공간에서 인접한 벡터 공간에 표현되도록 하기 위해 전처리 과정으로 자동 띄어쓰기를 적용하고 스팸 문자 메시지로 차단되는 것을 피하기 위한 목적으로 음절의 자모를 특수기호로 왜곡하여 맞춤법이 파괴된 상태로 단어 벡터와 문장 벡터를 생성하였다. 또한 문장 벡터 생성 시 CBOW와 skip gram이라는 두 가지 워드 임베딩 알고리즘을 적용하여 문장 벡터를 표현하였으며, 딥러닝을 이용한 스팸 문자 메시지 필터링의 성능 평가를 위해 SVM Light와 정확도를 비교 측정하였다.

A Study on Word Vector Models for Representing Korean Semantic Information

  • Yang, Hejung;Lee, Young-In;Lee, Hyun-jung;Cho, Sook Whan;Koo, Myoung-Wan
    • 말소리와 음성과학
    • /
    • 제7권4호
    • /
    • pp.41-47
    • /
    • 2015
  • This paper examines whether the Global Vector model is applicable to Korean data as a universal learning algorithm. The main purpose of this study is to compare the global vector model (GloVe) with the word2vec models such as a continuous bag-of-words (CBOW) model and a skip-gram (SG) model. For this purpose, we conducted an experiment by employing an evaluation corpus consisting of 70 target words and 819 pairs of Korean words for word similarities and analogies, respectively. Results of the word similarity task indicated that the Pearson correlation coefficients of 0.3133 as compared with the human judgement in GloVe, 0.2637 in CBOW and 0.2177 in SG. The word analogy task showed that the overall accuracy rate of 67% in semantic and syntactic relations was obtained in GloVe, 66% in CBOW and 57% in SG.

용언의 의미 제약을 이용한 단어 임베딩 (Word Embedding using Semantic Restriction of Predicate)

  • 이주상;옥철영
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2015년도 제27회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.181-183
    • /
    • 2015
  • 최근 자연어 처리 분야에서 딥 러닝이 많이 사용되고 있다. 자연어 처리에서 딥 러닝의 성능 향상을 위해 단어의 표현이 중요하다. 단어 임베딩은 단어 표현을 인공 신경망을 이용해 다차원 벡터로 표현한다. 본 논문에서는 word2vec의 Skip-gram과 negative-sampling을 이용하여 단어 임베딩 학습을 한다. 단어 임베딩 학습 데이터로 한국어 어휘지도 UWordMap의 용언의 필수논항 의미 제약 정보를 이용하여 구성했으며 250,183개의 단어 사전을 구축해 학습한다. 실험 결과로는 의미 제약 정보를 이용한 단어 임베딩이 유사성을 가진 단어들이 인접해 있음을 보인다.

  • PDF

워드 임베딩 기반 연구 논문 분류 기법 (Research Paper Classification Scheme based on Word Embedding)

  • 비스와스 딥또;길준민
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 추계학술발표대회
    • /
    • pp.494-497
    • /
    • 2021
  • 텍스트 분류(text classification)는 원시 텍스트 데이터로부터 정보를 추출할 수 있는 기술에 기반하여 많은 양의 텍스트 데이터를 관심 영역으로 분류하는 것으로 최근에 각광을 받고 있다. 본 논문에서는 워드 임베딩(word embedding) 기법을 이용하여 특정 분야의 연구 논문을 분류하고 추천하는 기법을 제안한다. 워드 임베딩으로 CBOW(Continuous Bag-of-Word)와 Sg(Skip-gram)를 연구 논문의 분류에 적용하고 기존 방식인 TF-IDF(Term Frequency-Inverse Document Frequency)와 성능을 비교 분석한다. 성능 평가 결과는 워드 임베딩에 기반한 연구 논문 분류 기법이 TF-IDF에 기반한 연구 논문 분류 기법보다 좋은 성능을 가진다는 것을 나타낸다.

Item2vec과 LSTM을 사용한 추천 시스템 설계 (Recommender System Design with Item2vec and LSTM)

  • 차민수;우지영
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2023년도 제67차 동계학술대회논문집 31권1호
    • /
    • pp.145-146
    • /
    • 2023
  • 본 논문에서는 최대 규모의 게임 플랫폼인 Steam에서 수집한 유저 정보 데이터 셋에 Item2vec과 LSTM을 사용하여 추천 시스템을 구현한다. 수집한 유저 정보 데이터 셋에 Item2vec을 적용하여 각각의 유저들이 보유하고 있는 고유한 Appid들을 200차원의 벡터로 변환한다. 그 후 데이터 셋을 기간에 따라 4단계의 시퀀스로 나눈 후 LSTM을 사용하여 유저별로 최대 5가지의 추천 리스트를 생성한다. 유저 정보 데이터 셋은 액티브한 유저 정보를 얻기 위해 Steam 게임 리뷰 항목에서 리뷰를 남긴 유저들의 데이터를 api를 사용해 수집했으며 LSTM을 사용한 실험의 성능 평가 지표는 RMSE를 사용했고 이때의 성능은 0.1357을 얻을 수 있었다.

  • PDF

Word2Vec과 가속화 계층적 밀집도 기반 클러스터링을 활용한 효율적 봇넷 탐지 기법 (An Efficient BotNet Detection Scheme Exploiting Word2Vec and Accelerated Hierarchical Density-based Clustering)

  • 이태일;김관현;이지현;이수철
    • 인터넷정보학회논문지
    • /
    • 제20권6호
    • /
    • pp.11-20
    • /
    • 2019
  • 수많은 기업체, 기관, 개인 사용자가 대규모 DDos(Distributed Denial of Service)공격에 의한 피해에 노출되고 있다. DDoS 공격은 좀비PC라 불리는 수많은 컴퓨터들과 계층적 지령구조를 좀비PC들을 제어하는 네트워크인 봇넷을 통하여 수행된다. 통상의 악성코드 탐지 소프트웨어나 백신은 멀웨어를 탐지하기 위해서 사전에 심층 분석을 통한 멀웨어 시그니처를 밝혀야 하며, 이를 탐지 소프트웨어나 백신에 업데이트하여야 한다. 이 과정은 방대한 시간과 비용이 소모된다. 본고에서는 인공신경망 모델을 이용하여 주기적인 시그니처 사전 업데이트가 필요 없는 봇넷 탐지기법을 제안한다. 제안하는 인공신경망 모델은 Word2Vec과 가속화 계층적 밀집도 기반 클러스터링을 활용한다. 제안기법의 봇넷 탐지성능은 CTU-13 데이터셋을 이용하여 평가하였다. 성능평가 결과, 분류 정확도 99.9%로 기존 방법에 비해 우수한 멀웨어 탐지율을 보인다.

워드 임베딩을 활용한 관용표현 인식 연구 (Korean Idiom Classification Using Word Embedding)

  • 박서윤;강예지;강혜린;장연지;김한샘
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.548-553
    • /
    • 2020
  • 우리가 쓰는 일상 언어 중에는 언어적 직관이 없는 사람은 의미 파악이 힘든 관용표현이 존재한다. 관용표현을 이해하기 위해서는 표현에 대한 형태적, 의미적 이해가 수반되어야 하기 때문이다. 기계도 마찬가지로 언어적 직관이 없기 때문에 관용표현에 대한 자연어 처리에는 어려움이 따른다. 특히 일반표현과 중의성 관계에 있는 관용표현의 특성이 고려되지 않은 채 문자적으로만 분석될 위험성이 높다. 본 연구에서는 '관용표현은 주변 문맥과의 관련성이 떨어진다'라는 가정을 중심으로 워드 임베딩을 활용한 관용표현과 일반표현에 대한 구분을 시도하였다. 실험은 4개 표현에 대해 이루어 졌으며 Skip-gram, Fasttext를 활용한 방법을 통해 관용표현은 주변 단어들과의 유사성이 떨어짐을 확인하였다.

  • PDF

한국어-영어 법률 말뭉치의 로컬 이중 언어 임베딩 (Utilizing Local Bilingual Embeddings on Korean-English Law Data)

  • 최순영;;임희석
    • 한국융합학회논문지
    • /
    • 제9권10호
    • /
    • pp.45-53
    • /
    • 2018
  • 최근 이중 언어 임베딩(bilingual word embedding) 관련 연구들이 각광을 받고 있다. 그러나 한국어와 특정 언어로 구성된 병렬(parallel-aligned) 말뭉치로 이중 언어 워드 임베딩을 하는 연구는 질이 높은 많은 양의 말뭉치를 구하기 어려우므로 활발히 이루어지지 않고 있다. 특히, 특정 영역에 사용할 수 있는 로컬 이중 언어 워드 임베딩(local bilingual word embedding)의 경우는 상대적으로 더 희소하다. 또한 이중 언어 워드 임베딩을 하는 경우 번역 쌍이 단어의 개수에서 일대일 대응을 이루지 못하는 경우가 많다. 본 논문에서는 로컬 워드 임베딩을 위해 한국어-영어로 구성된 한국 법률 단락 868,163개를 크롤링(crawling)하여 임베딩을 하였고 3가지 연결 전략을 제안하였다. 본 전략은 앞서 언급한 불규칙적 대응 문제를 해결하고 단락 정렬 말뭉치에서 번역 쌍의 질을 향상시켰으며 베이스라인인 글로벌 워드 임베딩(global bilingual word embedding)과 비교하였을 때 2배의 성능을 확인하였다.