• Title/Summary/Keyword: Skin dose

Search Result 950, Processing Time 0.038 seconds

Gamma-ray-induced skin injury in the mini-pig: Effects of irradiation exposure on cyclooxygenase-2 expression in the skin (감마선조사에 의한 돼지 피부장애에 cyclooxygenase-2의 발현변화)

  • Kim, Joong Sun;Park, Sunhoo;Jang, Won Seok;Lee, Sun Joo;Lee, Seung Sook
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.1
    • /
    • pp.65-72
    • /
    • 2015
  • The basic concepts of radiation-induced skin damage have been established, the biological mechanism has not been studied. In this study, we have examined the effects of gamma rays on skin injury and cyclooxygenase(COX)-2 expression. Gamma irradiation induced clinicopathological changes in a dose- and time-dependent manner in mini-pig skin. The histological changes were consistent with the changes in gross appearance at 12 weeks after irradiation. After three days' irradiation, apoptotic cells in the basal layer were found more frequently in irradiated skin than in normal skin, with the magnitude of the effect being dose-dependent. The thickness of the epidermis transiently increased 3 days after irradiation, and then gradually decreased, although changes in the epithelial thickness of the irradiated field were not observed with irradiation doses over 50 Gy. In the epithelium, there was an initial degenerative phase, during which the rate of basal cell depletion was dependent on the radiation dose (20-70 Gy). One week after irradiation, COX-2 expression was mostly limited to the basal cell layer and was scattered across these cells. High COX-2 expression was detected throughout the full depth of the skin after irradiation. The COX-2 protein is upregulated after irradiation in mini-pig skin. These histological changes associated with radiation exposure dose cause the increased COX-2 expression in a dose-dependent fashion.

A Study on the Necessary Number of Bolus Treatments in Radiotherapy after Modified Radical Mastectomy (변형 근치적 유방절제술 후 방사선치료에서 볼루스 적용횟수에 대한 고찰)

  • Hong, Chae-Seon;Kim, Jong-Sik;Kim, Young-Kon;Park, Young-Hwan
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.18 no.2
    • /
    • pp.113-117
    • /
    • 2006
  • Purpose: Post-mastectomy radiotherapy (PMR) is known to decrease loco-regional recurrence. Adequate skin and dermal dose are achieved by adding bolus. The more difficult clinical issue is determining the necessary number of bolus treatment, given the limits of normal skin tolerance. The aim of this study is to evaluate the necessary number of bolus treatment after PMR in patients with breast cancer. Materials and Methods: Four female breast cancer patients were included in the study. The median age was 53 years(range, $38{\sim}74$), tumor were left sided in 2 patients and right sided in 2patients. All patients were treated with postoperative radiotherapy after MRM. Radiotherapy was delivered to the chest wall (C.W) and supraclavicular lymph nodes (SCL) using 4 MV X-ray. The total dose was 50 Gy, in 2 Gy fractions (with 5 times a week). CT was peformed for treatment planning, treatment planning was peformed using $ADAC-Pinnacles^3$ (Phillips, USA) for all patients without and with bolus. Bolus treatment plans were generated using image tool (0.5 cm of thickness and 6 cm of width). Dose distribution was analyzed and the increased skin dose rate in the build-up region was computed and the skin dose using TLD-100 chips (Harshaw, USA) was measured. Results: No significant difference was found in dose distribution without and with bolus; C.W coverage was $95{\sim}100%$ of the prescribed dose in both. But, there was remarkable difference in the skin dose to the scar. The skin dose to the scar without and with bolus were $100{\sim}105%\;and\;50{\sim}75%$. The increased skin dose rates in the build-up region for Pt. 1, Pt. 2. Pt. 3 and Pt. 4 were 23.3%, 35.6%, 34.9%, and 41.7%. The results of measured skin dose using TLD-100 chips in the cases without and with bolus were 209.3 cGy and 161.1 cGy, 200 cGy and 150.2 cGy, 211.4 cGy and 160.5 cGy, 198.6 cGy and 155.5 cGy for Pt. 1, Pt. 2, Pt. 3, and Pt. 4. Conclusion: It was concludes through this analysis that the adequate number of bolus treatments is 50-60% of the treatment program. Further, clinical trial is needed to evaluate the benefit and toxicity associated with the use of bolus in PMR.

  • PDF

Ultraviolet A Induces Immunosuppression, Protection or Memory Enhancement Depending on Dose, while Ultraviolet B is Immunosuppressive and Tolerogenic over a Large Dose Range

  • Halliday, Gary M.;Byrne, Scott N.
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.197-200
    • /
    • 2002
  • UVR-induced immunosuppression contributes to skin cancer. The aim was to construct accurate dose response curves for primary and secondary contact sensitivity for solar-simulated UVR (ssUVR; 290-400nm), UVA and UVB as the role of UVA in immunosuppression is controversial. We used a xenon arc source. The mice were immobilised, enabling accurate dosing. C57BL/6 mice were immunosuppressed at half the dose of ssUVR required to cause sunburn but not by higher doses (up to the sunburn dose). Thus, ssUVR causes systemic immunosuppression only over a narrow, low dose range. UVA caused suppression at low but not high doses whereas UVB induced immunosuppression at all doses tested. 8 weeks later the mice were resensitised to assess tolerance. Mice exposed to the minimum immunosuppressive dose of ssUVR prior to primary sensitisation were tolerant to re-sensitisation. However, at higher doses of ssUVR, these mice were protected from tolerance. Interestingly, while low doses of UV A caused immunosuppression, even lower doses enhanced the response to the second sensitisation. Higher doses of UVA had no affect. UVB induced tolerance in a dose related manner. Thus, ssUVR only induces immunosuppression and tolerance over a narrow dose range. Both UVA and UVB are immunosuppressive at this dose, while higher doses of UVA protect from the suppressive effects of UVB. Surprisingly very low doses of UVA enhanced memory development. Thus UVR has complex effects on the immune system depending on dose and spectrum.

  • PDF

Measurement of Skin Dose for Rectal Cancer Patients in Radiotherapy using Optically Stimulated Luminescence Detectors (OSLDs) (광자극발광선량계(OLSDs)를 이용한 직장암 방사선치료 환자의 피부선량 측정)

  • Im, In-Chul;Yu, Yun-Sik;Lee, Jae-Seung
    • Journal of Radiation Protection and Research
    • /
    • v.36 no.2
    • /
    • pp.86-92
    • /
    • 2011
  • This study used the optically stimulated luminescence dosimeters (OSLDs), recently, received the revaluation of usefulness in vivo dosimetry, and the diode detecters to measure the skin dose of patient with the rectal cancer. The measurements of dose delivered were compared with the planned dose from the treatment planning system (TPS). We evaluated the clinical application of OSDs in radiotherapy. We measured the calibration factor of OSLDs and used the percent depth dose to verified, also, we created the three point of surface by ten patients of rectal cancer to measured. The calibration factors of OSLD was 1.17 for 6 MV X-ray and 1.28 for 10 MV X-ray, demonstrating the energy dependency of X-ray beams. Comparison of surface dose measurement using the OSLDs and diode detectors with the planned dose from the TPS, The skin dose of patient was increased 1.16 ~ 2.83% for diode detectors, 1.36 ~ 2.17% for OSLDs. Especially, the difference between planned dose and the delivery dose was increased in the perineum, a skin of intense flexure region, and the OSLDs as a result of close spacing of measuring a variate showed a steady dose verification than the diode detecters. Therefore, on behalf of the ionization chamber and diode detecters, OSLDs could be applied clinically in the verification of radiation dose error and in vivo dosimety. The research on the dose verification of the rectal cancer in the around perineal, a surface of intense flexure region, suggest continue to be.

Measurement of Skin Dose and Percentage Depth Does in Build-up Region Using a Fiber-optic Dosimeter (광섬유 방사선량계를 이용한 선량보강 영역에서의 심부선량 백분율과 피부 선량률 측정)

  • Cho, Dong-Hyun;Jang, Kyoung-Won;Yoo, Wook-Jae;Seo, Jeong-Ki;Heo, Ji-Yeon;Lee, Bong-Soo;Cho, Young-Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.21 no.1
    • /
    • pp.16-20
    • /
    • 2010
  • In this study, we have fabricated a fiber-optic dosimeter using an organic scintillator and a plastic optical fiber. The dosimeter measure skin dose and percentage depth dose in a build-up region for an incident high energy photon beam. The scintillating light generated in the organic sensor probe embedded in a solid water phantom is guided by 30 m plastic optical fiber to a light-measuring device such as a PMT or an electrometer. In addition, using a fiber-optic dosimeter or a GAFCHROMIC EBT film, skin dose and percentage depth dose in the build-up region are measured and compared.

Fundamental Study of nanoDot OSL Dosimeters for Entrance Skin Dose Measurement in Diagnostic X-ray Examinations

  • Okazaki, Tohru;Hayashi, Hiroaki;Takegami, Kazuki;Okino, Hiroki;Kimoto, Natsumi;Maehata, Itsumi;Kobayashi, Ikuo
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.3
    • /
    • pp.229-236
    • /
    • 2016
  • Background: In order to manage the patient exposure dose in X-ray diagnosis, it is preferred to evaluate the entrance skin dose; although there are some evaluations about entrance skin dose, a small number of report has been published for direct measurement of patient. We think that a small-type optically stimulated luminescence (OSL) dosimeter, named nanoDot, can achieve a direct measurement. For evaluations, the corrections of angular and energy dependences play an important role. In this study, we aimed to evaluate the angular and the energy dependences of nanoDot. Materials and Methods: We used commercially available X-ray diagnostic equipment. For angular dependence measurement, a relative response of every 15 degrees of nanoDot was measured in 40-140 kV X-ray. And for energy dependence measurement, mono-energetic characteristic X-rays were generated using several materials by irradiating the diagnostic X-rays, and the nanoDot was irradiated by the characteristic X-rays. We evaluated the measured response in an energy range of 8.1-75.5 keV. In addition, we performed Monte-Carlo simulation to compare experimental results. Results and Discussion: The experimental results were in good agreement with those of Monte-Carlo simulation. The angular dependence of nanoDot was almost steady with the response of 0 degrees except for 90 and 270 degrees. Furthermore, we found that difference of the response of nanoDot, where the nanoDot was irradiated from the randomly set directions, was estimated to be at most 5%. On the other hand, the response of nanoDot varies with the energy of incident X-rays; slightly increased to 20 keV and gradually decreased to 80 keV. These results are valuable to perform the precise evaluation of entrance skin dose with nanoDot in X-ray diagnosis. Conclusion: The influence of angular dependence and energy dependence in X-ray diagnosis is not so large, and the nanoDot OSL dosimeter is considered to be suitable dosimeter for direct measurement of entrance surface dose of patient.

The Variation of Surface Dose by Beam Spoiler in 10 MV Photon Beam from Linear Accelerator (선형가속기 10 MV 광자선에서 산란판(Beam Spoiler) 사용 시 표면선량 변화)

  • Bae, Seong-Cheol;Kim, Jun-Ho;Lee, Choul-Soo
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.18 no.1
    • /
    • pp.21-28
    • /
    • 2006
  • Purpose: The purpose of this study is to find a optimal beam spoiler condition on the dose distribution near the surface, when treating a squamous cell carcinoma of the head and neck and a lymphatic region with 10 MV photon beam. The use of a optimal spoiler allows elivering high dose to a superficial tumor volume, while maintaining the skin-sparing effect in the area between the surface to the depth of 0.4 cm. Materials and Methods: The lucite beam spoiler, which were a tissue equivalent, were made and placed between the surface and the photon collimators of linear accelerator. The surface-dose, the dose at the depth of 0.4 cm, and the maximum dose at the dmax were measured with a parallel-plate ionization chamber for $5{\times}5cm\;to\;30{\times}30cm^2$ field sizes using lucite spoilers with different thicknesses at varying skin-to-spoiler separation (SSS). In the same condition, the dose was measured with bolus and compared with beam spoiler. Results: The spoiler increased the surface and build-up dose and shifted the depth of maximum dose toward the surface. With a 10 MV x-ray beam and a optimal beam spoiler when treating a patient, a similer build-up dose with a 6 MV photon beam could be achieved, while maintaining a certain amount of skin spring. But it was provided higher surface dose under SSS of less than 5 cm, the spoiler thickness of more than 1.8 cm or more, and larger field size than $20{\times}20cm^2$ provided higher surface dose like bolus and obliterated the spin-sparing effect. the effects of the beam spoiler on beam profile was reduced with increasing depths. Conclusion: The lucite spoiler allowed using of a 10 MV photon beam for the radiation treatment of head and neck caner by yielding secondary scattered electron on the surface. The dose at superficial depth was increased and the depth of maximum dose was moved to near the skin surface. Spoiling the 10 MV x-ray beam resulted in treatment plans that maintained dose homogeneity without the consequence of increased skin reaction or treat volume underdose for regions near the skin surface. In this, the optimal spoiler thickeness of 1.2 cm and 1.8 cm were found at SSS of 7 cm for $10{\times}10cm^2$ field. The surface doses were measured 60% and 64% respectively. In addition, It showed so optimal that 94% and 94% at the depth of 0.4 cm and dmax respectively.

  • PDF

Study on the Radiation Dose about Skin Thickness of Rat (For Radiation Damage Tissue Engineering) (쥐의 피부두께에 따른 선량연구)

  • Jung, Hongmoon;Won, Doyeon;Kim, Hyeongyun;Jung, Jaeeun;Choi, hyeun-woo
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.6
    • /
    • pp.375-379
    • /
    • 2016
  • A rat is the most common experimental animal used for the realization of the radiation injury model. The certain thickness of rat skin was prepared by peeling off a rat skin. Radiation level was measured by using this rat skin. Also, The schematic of the formula was made that can predict the radiation absorbed dose (RAD) as a function of the thickness of the rat skin. Consequently, we will provide the RAD information in the realization of in-vitro experimental model regarding the rat's skin thickness by applying the formulas. Moreover, the results from this study can be effectively used for the in-vitro experiment of the rat subcutaneous tissue which was exposed to radiation.

Development of an easy-to-handle murine model for the characterization of radiation-induced gross and molecular changes in skin

  • Chang, Hsien Pin;Cho, Jae Ho;Lee, Won Jai;Roh, Hyun;Lee, Dong Won
    • Archives of Plastic Surgery
    • /
    • v.45 no.5
    • /
    • pp.403-410
    • /
    • 2018
  • Background Radiation-induced skin injury is a dose-limiting complication of radiotherapy. To investigate this problem and to develop a framework for making decisions on treatment and dose prescription, a murine model of radiation-induced skin injury was developed. Methods The dorsal skin of the mice was isolated, and irradiation was applied at single doses of 15, 30, and 50 Gy. The mice were followed for 12 weeks with serial photography and laser Doppler analysis. Sequential skin biopsy samples were obtained and subjected to a histological analysis, immunostaining against transforming growth factor beta (TGF-${\beta}$), and Western blotting with Wnt-3 and ${\beta}$-catenin. Increases in the levels of TGF-${\beta}$, Wnt, and ${\beta}$-catenin were detected after irradiation. Results All tested radiation doses caused progressive dermal thickening and fibrosis. The cause of this process, however, may not be radiation alone, as the natural course of wound healing may elicit a similar response. The latent appearance of molecular and histological markers that induce fibrosis in the 15 Gy group without causing apparent gross skin injuries indicates that 15 Gy is an appropriate dose for characterizing the effects of chronic irradiation alone. Thus, this model best mimics the patterns of injury that occur in human subjects. Conclusions This animal model can be used to elucidate the gross and molecular changes that occur in radiation-induced skin injury and provides an effective platform for studying this adverse effect without complicating the process of wound healing.

Measurement of Skin Dose Distribution for the Mobile X-ray Unit Collimator Shielding Device (이동형 X선 장치 차폐도구 제작을 통한 표면선량 분포 측정)

  • Hong, Sun-Suk;Kim, Deuk-Yong
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.12 no.1
    • /
    • pp.5-8
    • /
    • 2010
  • Opened a court in February 10, 2006, a rule of safety management of the diagnosis radiation system was promulgated for safety of the radiation worker, patients and patients' family members. The purpose of this rule is to minimize the risk of being exposed to radiation during the process of handling X-ray. For this reason, we manufactured shielding device of mobile X-ray unit collimator for diminution of skin dose. Shielding device is made to a thickness of Pb 0.375mm. For portable chest radiography, we measured skin dose 50cm from center ray to 200cm at intervals of 20cm by Unfors Xi detector. As a result, a rule of safety management of the diagnosis radiation system has been strengthened. But there are exceptions, such as ER, OR, ICU to this rule. So shielding device could contribute to protect unnecessary radiation exposure and improve nation's health.

  • PDF