• Title/Summary/Keyword: Skid resistance pavement

Search Result 36, Processing Time 0.024 seconds

Skid Resistance Characteristics of Pavement Surface (포장노면 미끄럼 저항특성)

  • Kim, Yong-Seok;Hong, Jae-Cheong;You, Hyeong-Mok
    • International Journal of Highway Engineering
    • /
    • v.14 no.4
    • /
    • pp.1-8
    • /
    • 2012
  • PURPOSES : Skid resistance on pavements plays an important role in reducing the risk of vehicle skidding on wet surface particularly. Almost 9.3 percent of traffic accidents were occurred under rainy condition and these are over-represented in terms of the severity of the crashes. Recently, unusual weather conditions referred widely as the intensified rainfalls justify the need of a systematic management of skid resistance. In this context, the study carried out the observational study on the skid resistance characteristics of different types of pavement with the time passage. METHODS : This study measured the skid resistance with Pavement Friction Tester at three times within five years. The skid resistance measurement has followed the method suggested by ASTM. RESULTS : As the main results under the scope of this study, skid resistance of asphalt concrete has not nearly reduced with time. On the contrary, skid resistance of cement concrete has been rapidly reduced with time though the highest resistance was gained at the early observation. Porous asphalt concrete shows a steady decrease of skid resistance with time, anyway, the reduction rate according to the increase of measurement speeds is relatively lower than the others. CONCLUSIONS : Based on our study, skid resistance of the pavement should be regarded as one of the pavement management system, so periodic measurement should be made to assure road safety as a whole.

Improvement of Pavement Skid Resistance (노면 미끄럼저항 증진방앙 연구)

  • 임승욱;유태석;엄주용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.216-224
    • /
    • 1996
  • Recently, Korea Highway Corporation has attemped to improve the highway safety in accordance with minimizing user's imconveniences. Currently, the Anti Skidding Pavement(ASP) has been introduced as a safety countermeasure on the safety frailty sections. In this study, a series of field evaluations on pavement skid resistance have been conducted on the skid frailty sections to analyze the effects and problems of the Anti Skidding Pavement (ASP), and to understand the behavior of pavement skid resistance due to pavement type, section characteristics, vehicles' speed and traffec volume. Test results show the Anti Skidding Pavement (ASP) has the effects to induce vehicles' speed reduction. However, there are no effects to increase skid resistance. According to these results, it is demanded to improve the applying method of current Anti Skidding Pavement (ASP) to devise an effective safety countermeasure for pavement skid, and to increase pavement skid resistance.

  • PDF

A Comparative Study on Skid Resistance Performance Evaluation Methods for Maintenance of Skid Resistance Pavement (미끄럼방지포장 유지관리를 위한 미끄럼저항 성능평가방법 비교 연구)

  • Hyun-Woo Cho;Sang-Kyun Noh;Bong-Chun Lee;Yoon-Seok Chung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.79-85
    • /
    • 2023
  • Skid resistance pavement is an accessory to the road and is a facility for the safe driving of cars by increasing the skid resistance of road pavement. In particular, in bad weather conditions such as snow, rain, and black ice, the skid resistance performance of skid resistance pavement greatly affects the safety of road traffic and drivers. However, BPT(British Pendulum Tester) has a test area of only 0.009 m2, making it difficult to represent the overall packaging surface. A reliable method of evaluating slip resistance performance is needed for maintaining non-slip packaging. In this study, the conventional BPT test and the skid resistance performance evaluation method of the PFT(Pavement Friction Tester) and µGT(Micro Grip Tester) tests were compared through guidelines and standard investigations and applied to the field skid resistance performance evaluation. In addition, skid resistance pavement with different skid resistance performance was installed at the test-bed and actual road demonstration sites to compare BPN(British Pendulum Number), SN(Skid Number), GN(Grip Number), and to derive correlations for each performance evaluation method. As a result of the experiment, SN and GN showed similar skid resistance performance, and the GN value was derived similar to BPN × 0.01.

Skid Resistance of the Sidewalks in Winter (겨울철 보도 미끄럼 저항)

  • Kim, Yong Seok
    • International Journal of Highway Engineering
    • /
    • v.15 no.6
    • /
    • pp.17-23
    • /
    • 2013
  • PURPOSES : This study aimed to measure the skid resistance of the sidewalk in order to find out the relationship between different surface types and skid resistance. By using British Pendulum Tester, skid resistance of sidewalk was measured in a wet after snow-melt, sludgy, and snowy conditions. METHODS : The skid resistance was measured on surfaces including Concrete Interlocking Block Paving, Colour Asphalt Pavement, Granite Block Paving, Manhole, and Tactile Paving for Visually Impaired. Five trials at each measurement were made, and the average and standard deviation were derived. RESULTS : The skid resistance measured in wet after snow-melt, sludgy, and snowy conditions for the various surface types are summarized and compared. Reduction rates of skid resistance of sludgy and snowy against wet after snow-melt are also analysed. The skid resistance variation between measurement points which mimic pedestrian route in study site are analysed to check out the consistency of the skid resistance along the sidewalk. CONCLUSIONS : The study concluded that the skid resistance of sidewalk surfaces varied depending on the surface types and weather conditions. Secondly, reduction rates of skid resistance according to weather changes are varied depending on the surface types, Thirdly, consistency of skid resistance along the pedestrian route is hardly acquired in the study site at least. So, future study on the consistency evaluation for skid resistance along sidewalk is strongly recommended.

Skid Resistance Change by Dirt Material on Road Surface of Concrete Pavement (콘크리트포장의 노면 잔류 이물질에 따른 미끄럼저항변화)

  • Lee, Seung-Woo;Kim, Nam-Choul
    • International Journal of Highway Engineering
    • /
    • v.6 no.4 s.22
    • /
    • pp.35-43
    • /
    • 2004
  • Skid resistance is an important factor that control braking distance and secure safety by preventing slipperiness between tire and pavement surface. Decrease of skid resistance at wet condition may cause fatal traffic accidents. Dirt materials such as sand and do-icings on the road surface also can be a factor for decrease skid resistance. This study makes an investigation into influence of skid resistance between varied cement concrete pavements about surface texturing method(transverse tining, longitudinal tining, exposed aggregate surface texturing method) and wearing condition of pavement surface texture(new constructed pavement's surface, wore pavement's surface) using accelerate concrete pavement wearing tester when remains of dirt material are obtained between tire and road surface on PCC pavement. As dirt material on road surface of concrete pavement, sand, calcium chloride and old oil were used with different amount of each cases.

  • PDF

An Evaluation of Skid Resistance Properties of Asphalt Concrete Pavement (아스팔트콘크리트 포장의 노면 미끄럼 저항성 평가)

  • Kim, Nakseok;Jeong, Haesoo
    • Journal of the Society of Disaster Information
    • /
    • v.7 no.2
    • /
    • pp.87-95
    • /
    • 2011
  • The skid resistant of pavement surface is an important parameter since it is directly related to the traffic safety under moving vehicular loads. In particular, it should be considered as a major factor in pavement performance evaluations to reduce the traffic accident from vehicular sliding. In this study, a portable and an automatic skid resistance tests were used to evaluate the skid resistances of the in-situ pavements. The test results showed that the skid resistance of the conventional dense graded pavement was more noticeable than the other pavement types such as the drainage pavement and the stone mastic asphalt(SMA) pavement as the service life of pavement was increased.

A Study on Field Applicability Evaluation of the Hydrophobic - Low Viscosity Surface Treatment Material for Pavement Preventive Maintenance (소수성 특성을 이용한 저점도 AP 표면처리재의 현장 적용성 연구)

  • Choi, Jun Seong
    • International Journal of Highway Engineering
    • /
    • v.16 no.1
    • /
    • pp.31-39
    • /
    • 2014
  • PURPOSES : Surface treatment material for pavement preventive maintenance should be inspected field applicability. This study(Part II) aimed to checkup coating characteristics and performance analysis using lab and field tests. The hydrophobic - low viscosity filling material for pavement preventive maintenance is presented in Part I, which is a series of companion study. METHODS : Relative comparison between general asphalt mixtures and surface treatment asphalt mixtures are analyzed and measured for the field application such as indirect tensile strength ratio(TSR), abrasion resistance, crack propagation resistance, temperature resistance, coating thickness, permeability resistance and skid resistance in terms of british pendulum number(BPN). RESULTS : It is found that TSR, crack propagation resistance and permeability resistance is increased as against uncoated asphalt specimen. Abrasion resistance and temperature resistance is secured from the initial coating thickness point of view, which is about 0.2~0.3mm. Skid resistance on the surface treatment pavement is satisfied with the BPN criteria of national highway because of exposed aggregate and crack sill induced pavement deterioration and damage cracks. CONCLUSIONS : The hydrophobic - low viscosity surface treatment material for pavement preventive maintenance is validated on field applicability evaluation based on quantitative analysis of coating thickness and performance analysis using lab and field tests.

Development of Domestic Pattern Frame Method for Skid Resistance Pavement (미끄럼 방지 도로 포장을 위한 국내형 패턴 프레임 공법 개발)

  • Lee, TaeMin;Choi, HaJin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.2
    • /
    • pp.58-65
    • /
    • 2021
  • As increasing social needs of pavement maintenance, pattern frame method has been constructed in Korea. The pattern frame not only increases the skid resistance of pavements but also improve the scenery. However, construction of the pattern frame currently relies on imported materials. In this paper, we localize the materials used in pattern frame and conduct performance verification on them. The important performance indicators are the adhesion strength of undercoating materials and the skid resistance of finished pattern frames. The adhesion strength was targeted at 1.4MPa, and the localization alternative material met the target performance with 2.35MPa, the skid resistance performance was targeted at 40BPN, and the localization alternative material met the target performance with 75BPN. In the case of localized materials, approximately 40% cost reduction (per 1m2)compared to imported materials was confirmed.

Fundamental Study on Applying an Integral TiO2 Solution to Asphalt Pavement (1액형 광촉매를 아스팔트 포장에 적용하기 위한 기초연구)

  • Park, Jaeyoung;Kim, Young;Kim, Hyeok-Jung;Hwang, Yong-Kyung;Lee, Jaejun
    • International Journal of Highway Engineering
    • /
    • v.19 no.1
    • /
    • pp.53-62
    • /
    • 2017
  • PURPOSES : This research was a fundamental study on the application of an integral $TiO_2$ solution to asphalt concrete pavement. The integral $TiO_2$ solution was produced in pilot production equipment; application of the integral $TiO_2$ solution to asphalt pavement was conducted to examine the pollution-reducing capability of photocatalytic compounds such as $TiO_2$. The photocatalytic $TiO_2$ reacted with air pollutants, converting them into small amounts of relatively benign molecules. METHODS : In this study, laboratory experiments were conducted using five various testing methods. Tensile strength ratio (TSR) and British pendulum test (BPT) were conducted in order to evaluate the properties of asphalt pavement subsequent to the integral $TiO_2$ solution coating. In addition, methylene blue testing, a measurement of nitrate on the coated pavement, and nitrogen oxide (NOx) reduction testing were conducted in order to evaluate photocatalytic reaction. Lastly, a UV-A lamp was used as a light source for photocatalytic reactions. RESULTS : Test results indicated no change in the properties of asphalt pavement following the integral $TiO_2$ solution coating. In order to evaluate the performance of asphalt pavement as a function of $TiO_2$, the moisture susceptibility and skid resistance were investigated. The moisture susceptibility and skid resistance satisfied there quirements related to pavement quality and safety specification. Furthermore, the effects of reduction of air pollution were significantly improved as determined via the methylene blue test and NOx reduction test. The $TiO_2$-paved asphalt specimen exhibited approximately 43% reduction of NOx. CONCLUSIONS : This study has suggested that applying $TiO_2$ rarely impacts asphalt pavement performance measures such as moisture susceptibility and skid resistance, and that its application may be a better means of reducing air pollution. Further studies, such as proper $TiO_2$ dosage rates and compatibility with various pavement types, are required to broaden and generalize its application.

Performance Evaluation of Surface Treatments for Asphalt Pavement Preservation (아스팔트 도로포장 유지보수용 표면처리공법의 공용성 평가)

  • Im, Jeong Hyuk;Kim, Y. Richard;Back, Cheolmin
    • International Journal of Highway Engineering
    • /
    • v.17 no.2
    • /
    • pp.89-98
    • /
    • 2015
  • PURPOSES : The objective of this study is to evaluate the performance properties of chip seals and fog seals with polymer-modified emulsions. METHODS : The performance of chip seals and fog seals was evaluated on the basis of common issues in surface treatments. Granite aggregate and four types of asphalt emulsions (one of the unmodified and three of the modified emulsions) were used considering the usage in field. A Vialit test was performed to determine the aggregate retention, and the MMLS3 (Third Scale Model Mobile Load Simulator) test was conducted to determine the aggregate retention, bleeding, and rutting. In addition, the fog seal specimens were tested by the BPT (British Pendulum Test) to evaluate skid resistance. RESULTS AND CONCLUSIONS : Overall, the polymer-modified emulsions (PMEs) showed better aggregate retention and bleeding resistance for both chip seals and fog seals. When comparing the performance of the PMEs, the difference was not considerable. In addition, PMEs present significantly better rutting resistance than unmodified emulsions. For skid resistance, if the recommended mix design is applied, the specimens do not cause issues with skid resistance. Although all of the fog seal specimens were over the criteria for skid resistance, the specimen fabricated by the high emulsion application rate (EAR) of the unmodified emulsion was nearly equivalent to the skid value criteria. Therefore, the use of an unmodified emulsion with a high EAR should be carefully applied in the field.