• Title/Summary/Keyword: Skid

Search Result 184, Processing Time 0.02 seconds

A Study on Construction Methods of Roller Compacted Concrete Pavement for Bike Roads (자전거도로용 롤러 전압 콘크리트 포장의 시공 방안 연구)

  • Lee, Chang-Ho;Kim, Young-Kyu;Kang, Jae-Gyu;Park, Cheol-Woo;Lee, Seung-Woo
    • International Journal of Highway Engineering
    • /
    • v.13 no.2
    • /
    • pp.103-114
    • /
    • 2011
  • Usage of bicycle has been supported the universal reduction of energy consumption and $CO_2$. For the same purpose, new constructions for long length bike roads are planned in Korea. Recently, laboratory tests of physical properties and resistance against environmental loading about optimum mix design of roller compacted concrete, that have advantages of high structural performance by cement hydration and aggregate interlocking, simple construction procedure and low construction cost, are performed for the effective construction of new bike roads. However, properties of roller compacted concrete had different results between laboratory and field tests since it had different compaction method. Also, construction method of roller compacted concrete are not defined for the application of bike roads since it had different demand performance such as thin pavement thickness, low strength and etc with road pavements. Thus, in this experimental research was launched to evaluate the core properties, visual inspection, compaction ratio, water content, thickness reduction rate of roller compaction, skid resistance and roughness by experimental construction about variable mix proportion and compaction method based on laboratory test results. And construction method of roller compacted concrete pavement were suggested for the application of bike roads.

Fatigue Analysis for Levitation Rail of Urban Maglev System (도시형 자기부상열차 부상레일의 피로해석)

  • Kim, Kyung-Taek;Kim, Jae-Yong;Kim, Yong-Hwan;Park, Jin-Soo;Pyen, Sang-Yun
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.39-45
    • /
    • 2008
  • A levitation rail is placed on the top of track structure to operate Maglev vehicles and a part of track that link up with a sleeper is applied repeated load in Maglev vehicles operation. This paper aimed to verify validity of design for levitation rail, through the fatigue analysis about load which is applied to levitation rail in Maglev vehicles operation and impact load occurring in an emergency landing. Load conditions applied design load(23kN/m) in normal operation and skid drop load(24kN/m) in vehicle drop. And boundary conditions are consider bolt fixing and welding. Through static analysis, weak point and maximum stress of levitation rail could be obtained. S-N(stress-life) method was used in oder to predict fatigue life, and Goodman relationship was applied to consider a effect of mean stress. Also damage was calculated by using Miner's. As a result of fatigue analysis, levitation rail had a fatigue life which was more than requirement ($10^6$cycle) in all analysis conditions. Assumption that $10^8{\sim}10^9$cycles is infinite life, all analysis conditions had infinite life except a case under drop load and bolt fixing($1.21{\times}10^6$).

  • PDF

The Development of a Machine Vision Algorithm for Automation of Pavement Crack Sealing (도로면 크랙실링 자동화를 위한 머신비전 알고리즘의 개발)

  • Yoo Hyun-Seok;Lee Jeong-Ho;Kim Young-Suk;Kim Jung-Ryeol
    • Korean Journal of Construction Engineering and Management
    • /
    • v.5 no.2 s.18
    • /
    • pp.90-105
    • /
    • 2004
  • Machines for crack sealing automation have been continually developed since the early 1990's because of the effectiveness of crack sealing that would be able to improve safety, quality and productivity. It has been considered challenging problem to detect crack network in pavement which includes noise (oil marks, skid marks, previously sealed cracks and inherent noise). Moreover, it is required to develop crack network mapping and modeling algorithm in order to accurately inject sealant along to the middle of cut crack network. The primary objective of this study is to propose machine vision algorithms (digital image processing algorithm and path planning algorithm) for fully automated pavement crack sealing. It is anticipated that the effective use of the proposed machine vision algorithms would be able to reduce error rate in image processing for detecting, mapping and modeling crack network as well as improving quality and productivity compared to existing vision algorithms.

The Experimental Study on the Transient Brake Time of Vehicles by Road Pavement and Friction Coefficient (노면 포장별 차량의 제동경과시간 및 마찰계수에 관한 실험적 연구)

  • Lim, Chang-Sik;Choi, Yang-Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6D
    • /
    • pp.587-597
    • /
    • 2010
  • When a car accident occurs, people who had an accident are not free from civil and criminal issues so that the accident investigator should reenact and analyze the accident situation accurately. In addition, the obtained documents through the analysis of such car accident occurrence and related factors have to be used to carry out the improvement of the areas that has numerous car accidents and complementary actions. The vehicle speed, accelerating force, braking power are currently known as the most affecting factors in accordance with many car accidents, traffic facilities, road design, etc. The vehicle's performance and rode friction coefficient road surface friction coefficient are affecting the most closely in this field. Especially, once the estimate of the speed of the accident moment relating to main eleven articles of Traffic Accident Exemption Law is very important and accuracy is required. However, currently the researches of these matters have not made exclusively yet in Korea. In this study by reflecting this current situation, until the sudden braking history is found from the car's sudden braking, it estimates accurately the transient brake time and rode friction coefficient by measuring a time of transient brake time through the precision speed detector (Vericom VC2000PC). The analysis of the experimental results calculated the transient brake time and friction coefficient to fit into the purpose of this study in the basis of different kind of various special purpose asphalt pavement and slip-prevention pavement and provided the fundamental data.