• 제목/요약/키워드: Ski trajectory

검색결과 5건 처리시간 0.02초

Kinematic Comparative Analysis of Long Turns between Experienced and Inexperienced Ski Instructors

  • Jo, Hyun Dai
    • 한국운동역학회지
    • /
    • 제30권1호
    • /
    • pp.17-25
    • /
    • 2020
  • Objective: The purpose of this study is to provide a better understanding of long turn mechanism by describing long turns after kinematic analysis and provide skiers and winter sports instructors with data through which they are able to analyze right postures for turns in skiing in a systematic, rational and scientific manner. Method: For this, a mean difference of kinematic variables (the center of gravity (CG) displacement of distance, trajectory, velocity, angle) was verified against a total of 12 skiers (skilled and unskilled, 6 persons each), regarding motions from the up-start to down-end points for long turns. Results: First, concerning the horizontal displacement of CG during a turn in skiing, skilled skiers were positioned on the right side at the upstart and edge-change points at a long turn. There was no difference in anteroposterior and vertical displacements. Second, in terms of CG-trajectory differences, skilled skiers revealed a significant difference during a long turn. Third, regarding skiing velocity, skilled skiers were fast at the edge-change and maximum inclination points in long turns. Fourth, there was no difference in a hip joint in terms of a lower limb joint angle. In a knee joint, a large angle was found at the up-start point among skilled skiers when they made a long turn. Conclusion: In overall, when skilled and unskilled skiers were compared, to make a good turn, it is required to turn according to the radius of turn by reducing weight, concerning the CG displacement. Regarding the CG-trajectory differences, the edge angle should be adjusted via proper inclination angulation. In addition, a skier should be more leaned toward the inside of a turn when they make a long turn. In terms of skiing velocity, it is needed to reduce friction on snow through the edging and pivoting of the radius or turn according to curvature and controlling ski pressure. Regarding a lower limb joint angle, it is important to make an up move by increasing ankle and knee angles instead of keeping the upper body straight during an up motion.

물리 모델 분석을 통한 상호 작용형 스키시뮬레이터 동작인식 시스템 개발 (The Development of Interactive Ski-Simulation Motion Recognition System by Physics-Based Analysis)

  • 진문섭;최준호;정경렬
    • 대한기계학회논문집 C: 기술과 교육
    • /
    • 제1권2호
    • /
    • pp.205-210
    • /
    • 2013
  • 본 연구에서는 스키 시뮬레이터의 사용자 감응형 제어를 위한 물리모델과 동작인식 시스템의 개발되었으며, 스키 선수의 자세 변화에 따른 스키 슬로프 상에서의 거동과의 부합성 확보를 위하여 실제 현장 실험데이터의 회귀분석을 통해 동작인식 시스템에 사용될 파라미터 및 관계식을 도출하였다. 개발된 물리모델 기반 스키 동작 인식 시뮬레이터는 실시간으로 Kinect 장치를 사용하여 사용자의 관절별 질량을 분석하여, 정확한 체중심을 추정하고, 시뮬레이터 하드웨어에서 적용할 수 있도록 힘, 속도, 가속도에 대한 피드백을 전달하도록 구성되었다. 본 연구결과는 스키시뮬레이터의 인식모듈로 사용되었으며, 물리모델 기반 가상 스포츠 시뮬레이터 제작에 응용 할 수 있는 자료로 활용될 것이다.

실시간 DGPS를 이용한 스키어(skier) 교육용 소프트웨어 개발 (Development of skier-training software using real-time DGPS)

  • 윤영선;김도윤;조영수;최선정;이상효;장재규;한광훈;박성민;기창돈
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.53-53
    • /
    • 2000
  • In this paper, we introduce the real-time skier-training software using DGPS. We used a PCS to receive the pseudorange correction messages from the reference station. We tested the performance of this system and could get a skier's position in real-time with high accuracy. It can help skier-trainers to monitor a skier's trajectory and teach him mote effectively This paper will show you how the system works and prove it has good performance.

  • PDF

알파인 스키 분석을 위한 운동역학 연구 동향 (Biomechanical Research Trends for Alpine Ski Analysis)

  • 이주성;문제헌;김진해;황지니;김혜영
    • 한국체육학회지인문사회과학편
    • /
    • 제57권6호
    • /
    • pp.293-308
    • /
    • 2018
  • 본 연구는 알파인 스키와 관련하여 과거부터 최근까지 진행된 운동역학 연구의 동향을 파악하여 향후 운동역학 분야에서 진행되어야 할 연구 방향을 제언하고자 수행하였다. 운동역학 연구 분야에서는 스키 턴의 메커니즘과 스키어의 등급과 기술 수준에 따른 자세 분석, 스키와 눈의 마찰력, 공기저항 등의 연구가 주로 진행되었다. 이후 측정 센서와 컴퓨터 시뮬레이션을 활용한 연구에서는 IMU와 GPS 센서를 활용하여 스키 장비 개발 및 획득 데이터 검증에 연구가 진행되고 있다. 이와 같은 연구동향을 반영하여 추후 알파인 스키 분야에서 진행되어야 할 운동역학 연구에 대한 제언은 다음과 같다. 첫째, 기존 운동역학 분석 범위의 한계를 넘어 스키 전 구간이 분석 가능하고 스포츠 현장에서 간편하게 활용할 수 있는 측정 장비가 개발되어야 한다. 둘째, 측정 센서를 활용하여 획득한 정보의 정확도 향상과 이를 바탕으로 다양한 분석기법에 관한 연구가 지속적으로 진행되어 스포츠 현장에 도움이 될 수 있는 자료가 제공되어야 한다. 셋째, 컴퓨터 시뮬레이션을 활용하여 스키에서 발생하는 부상 메커니즘을 명확히 정립하고 부상을 예방할 수 있는 방안을 모색해야 한다. 넷째, 컴퓨터 시뮬레이션을 활용한 3차원 스키 모델을 개발하여 실제 주행데이터와 비교 검증함으로써 최적화된 스키 궤적 알고리즘 제공이 필요하다.

The intrinsic instabilities of fluid flow occured in the melt of Czochralski crystal growth system

  • Yi, Kyung-Woo;Koichi Kakimoto;Minoru Eguchi;Taketoshi Hibiya
    • 한국결정성장학회:학술대회논문집
    • /
    • 한국결정성장학회 1996년도 The 9th KACG Technical Annual Meeting and the 3rd Korea-Japan EMGS (Electronic Materials Growth Symposium)
    • /
    • pp.179-200
    • /
    • 1996
  • The intrinsic instabilities of fluid flow occurred in the melt of the Czochralski crystal growth system Czochralski method, asymmetric flow patterns and temperature profiles in the melt have been studied by many researchers. The idea that the non-symmetric structure of the growing equipment is responsible for the asymmetric profiles is usually accepted at the first time. However further researches revealed that some intrinsic instabilities not related to the non-symmetric equipment structure in the melt could also appear. Ristorcelli had pointed out that there are many possible causes of instabilities in the melt. The instabilities appears because of the coupling effects of fluid flow and temperature profiles in the melt. Among the instabilities, the B nard type instabilities with no or low crucible rotation rates are analyzed by the visualizing experiments using X-ray radiography and the 3-D numerical simulation in this study. The velocity profiles in the Silicon melt at different crucible rotation rates were measured using X-ray radiography method using tungsten tracers in the melt. The results showed that there exits two types of fluid flow mode. One is axisymmetric flow, the other is asymmetric flow. In the axisymmetric flow, the trajectory of the tracers show torus pattern. However, more exact measurement of the axisymmetrc case shows that this flow field has small non-axisymmetric components of the velocity. When fluid flow is asymmetric, the tracers show random motion from the fixed view point. On the other hand, when the observer rotates to the same velocity of the crucible, the trajectory of the tracer show a rotating motion, the center of the motion is not same the center of the melt. The temperature of a point in the melt were measured using thermocouples with different rotating rates. Measured temperatures oscillated. Such kind of oscillations are also measured by the other researchers. The behavior of temperature oscillations were quite different between at low rotations and at high rotations. Above experimental results means that the fluid flow and temperature profiles in the melt is not symmetric, and then the mode of the asymmetric is changed when rotation rates are changed. To compare with these experimental results, the fluid flow and temperature profiles at no rotation and 8 rpm of crucible rotation rates on the same size of crucible is calculated using a 3-dimensional numerical simulation. A finite different method is adopted for this simulation. 50×30×30 grids are used. The numerical simulation also showed that the velocity and flow profiles are changed when rotation rates change. Futhermore, the flow patterns and temperature profiles of both cases are not axisymmetric even though axisymmetric boundary conditions are used. Several cells appear at no rotation. The cells are formed by the unstable vertical temperature profiles (upper region is colder than lower part) beneath the free surface of the melt. When the temperature profile is combined with density difference (Rayleigh-B nard instability) or surface tension difference (Marangoni-B nard instability) on temperature, cell structures are naturally formed. Both sources of instabilities are coupled to the cell structures in the melt of the Czochralski process. With high rotation rates, the shape of the fluid field is changed to another type of asymmetric profile. Because of the velocity profile, isothermal lines on the plane vertical to the centerline change to elliptic. When the velocity profiles are plotted at the rotating view point, two vortices appear at the both sides of centerline. These vortices seem to be the main reason of the tracer behavior shown in the asymmetric velocity experiment. This profile is quite similar to the profiles created by the baroclinic instability on the rotating annulus. The temperature profiles obtained from the numerical calculations and Fourier transforms of it are quite similar to the results of the experiment. bove esults intend that at least two types of intrinsic instabilities can occur in the melt of Czochralski growing systems. Because the instabilities cause temperature fluctuations in the melt and near the crystal-melt interface, some defects may be generated by them. When the crucible size becomes large, the intensity of the instabilities should increase. Therefore, to produce large single crystals with good quality, the behavior of the intrinsic instabilities in the melt as well as the effects of the instabilities on the defects in the ingot should be studied. As one of the cause of the defects in the large diameter Silicon single crystal grown by the

  • PDF