• Title/Summary/Keyword: Skewed Student-t Distribution

Search Result 6, Processing Time 0.019 seconds

Long Memory Properties in the Volatility of Australian Financial Markets: A VaR Approach (호주 금융시장 변동성의 장기기억 특성: VaR 접근법)

  • Kang, Sang-Hoon;Yoon, Seong-Min
    • International Area Studies Review
    • /
    • v.12 no.2
    • /
    • pp.3-26
    • /
    • 2008
  • This article investigates the usefulness of the skewed Student-t distribution in modeling the long memory volatility property that might be present in the daily returns of two Australian financial series; the ASX200 stock index and AUD/USD exchange rate. For this purpose we assess the performance of FIGARCH and FIAPARCH Value-at-Risk (VaR) models based on the normal, Student-t, and skewed Student-t distribution innovations. Our results support the argument that the skewed Student-t distribution models produce more accurate VaR estimates of Australian financial markets than the normal and Student-t distribution models. Thus, consideration of skewness and excess kurtosis in asset return distributions provides appropriate criteria for model selection in the context of long memory volatility models in Australian stock and foreign exchange markets.

Value-at-Risk Models in Crude Oil Markets (원유시장 분석을 위한 VaR 모형)

  • Kang, Sang Hoon;Yoon, Seong Min
    • Environmental and Resource Economics Review
    • /
    • v.16 no.4
    • /
    • pp.947-978
    • /
    • 2007
  • In this paper, we investigated a Value-at-Risk approach to the volatility of two crude oil markets (Brent and Dubai). We also assessed the performance of various VaR models (RiskMetrics, GARCH, IGARCH and FIGARCH models) with the normal and skewed Student-t distribution innovations. The FIGARCH model outperforms the GARCH and IGARCH models in capturing the long memory property in the volatility of crude oil markets returns. This implies that the long memory property is prevalent in the volatility of crude oil returns. In addition, from the results of VaR analysis, the FIGARCH model with the skewed Student-t distribution innovation predicts critical loss more accurately than other models with the normal distribution innovation for both long and short positions. This finding indicates that the skewed Student-t distribution innovation is better for modeling the skewness and excess kurtosis in the distribution of crude oil returns. Overall, these findings might improve the measurement of the dynamics of crude oil prices and provide an accurate estimation of VaR for buyers and sellers in crude oil markets.

  • PDF

Can the Skewed Student-t Distribution Assumption Provide Accurate Estimates of Value-at-Risk?

  • Kang, Sang-Hoon;Yoon, Seong-Min
    • The Korean Journal of Financial Management
    • /
    • v.24 no.3
    • /
    • pp.153-186
    • /
    • 2007
  • It is well known that the distributional properties of financial asset returns exhibit fatter-tails and skewer-mean than the assumption of normal distribution. The correct assumption of return distribution might improve the estimated performance of the Value-at-Risk(VaR) models in financial markets. In this paper, we estimate and compare the VaR performance using the RiskMetrics, GARCH and FIGARCH models based on the normal and skewed-Student-t distributions in two daily returns of the Korean Composite Stock Index(KOSPI) and Korean Won-US Dollar(KRW-USD) exchange rate. We also perform the expected shortfall to assess the size of expected loss in terms of the estimation of the empirical failure rate. From the results of empirical VaR analysis, it is found that the presence of long memory in the volatility of sample returns is not an important in estimating an accurate VaR performance. However, it is more important to consider a model with skewed-Student-t distribution innovation in determining better VaR. In short, the appropriate assumption of return distribution provides more accurate VaR models for the portfolio managers and investors.

  • PDF

BAYESIAN HIERARCHICAL MODEL WITH SKEWED ELLIPTICAL DISTRIBUTION

  • Chung, Youn-Shik;Dipak K. Dey;Yang, Tae-Young;Jang, Jung-Hoon
    • Journal of the Korean Statistical Society
    • /
    • v.32 no.4
    • /
    • pp.425-448
    • /
    • 2003
  • Meta-analysis refers to quantitative methods for combining results from independent studies in order to draw overall conclusions. We consider hierarchical models including selection models under a skewed heavy tailed error distribution proposed originally by Chen et al. (1999) and Branco and Dey (2001). These rich classes of models combine the information of independent studies, allowing investigation of variability both between and within studies, and incorporate weight function. Here, the testing for the skewness parameter is discussed. The score test statistic for such a test can be shown to be expressed as the posterior expectations. Also, we consider the detail computational scheme under skewed normal and skewed Student-t distribution using MCMC method. Finally, we introduce one example from Johnson (1993)'s real data and apply our proposed methodology. We investigate sensitivity of our results under different skewed errors and under different prior distributions.

Binary regression model using skewed generalized t distributions (기운 일반화 t 분포를 이용한 이진 데이터 회귀 분석)

  • Kim, Mijeong
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.5
    • /
    • pp.775-791
    • /
    • 2017
  • We frequently encounter binary data in real life. Logistic, Probit, Cauchit, Complementary log-log models are often used for binary data analysis. In order to analyze binary data, Liu (2004) proposed a Robit model, in which the inverse of cdf of the Student's t distribution is used as a link function. Kim et al. (2008) also proposed a generalized t-link model to make the binary regression model more flexible. The more flexible skewed distributions allow more flexible link functions in generalized linear models. In the sense, we propose a binary data regression model using skewed generalized t distributions introduced in Theodossiou (1998). We implement R code of the proposed models using the glm function included in R base and R sgt package. We also analyze Pima Indian data using the proposed model in R.

A spatial heterogeneity mixed model with skew-elliptical distributions

  • Farzammehr, Mohadeseh Alsadat;McLachlan, Geoffrey J.
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.3
    • /
    • pp.373-391
    • /
    • 2022
  • The distribution of observations in most econometric studies with spatial heterogeneity is skewed. Usually, a single transformation of the data is used to approximate normality and to model the transformed data with a normal assumption. This assumption is however not always appropriate due to the fact that panel data often exhibit non-normal characteristics. In this work, the normality assumption is relaxed in spatial mixed models, allowing for spatial heterogeneity. An inference procedure based on Bayesian mixed modeling is carried out with a multivariate skew-elliptical distribution, which includes the skew-t, skew-normal, student-t, and normal distributions as special cases. The methodology is illustrated through a simulation study and according to the empirical literature, we fit our models to non-life insurance consumption observed between 1998 and 2002 across a spatial panel of 103 Italian provinces in order to determine its determinants. Analyzing the posterior distribution of some parameters and comparing various model comparison criteria indicate the proposed model to be superior to conventional ones.