• Title/Summary/Keyword: Skeleton modeling

Search Result 41, Processing Time 0.026 seconds

Making Human Phantom for X-ray Practice with 3D Printing (3D 프린팅을 활용한 일반 X선 촬영 실습용 인체 팬텀 제작)

  • Choi, Woo Jeon;Kim, Dong Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.5
    • /
    • pp.371-377
    • /
    • 2017
  • General phantom for practical X-ray photography Practical phantom is an indispensable textbook for radiology, but it is difficult for existing commercially available phantom to be equipped with various kinds of phantom because it is an expensive import. Using 3D printing technology, I would like to make the general phantom for practical X-ray photography less expensive and easier. We would like to use a skeleton model that was produced based on CT image data using a 3D printer of FDM (Fused Deposition Modeling) method as a phantom for general X-ray imaging. 3D slicer 4.7.0 program is used to convert CT DICOM image data into STL file, convert it to G-code conversion process, output it to 3D printer, and create skeleton model. The phantom of the completed phantom was photographed by X - ray and CT, and compared with actual medical images and phantoms on the market, there was a detailed difference between actual medical images and bone density, but it could be utilized as a practical phantom. 3D phonemes that can be used for general X-ray practice can be manufactured at low cost by utilizing 3D printers which are low cost and distributed and free 3D slicer program for research. According to the future diversification and research of 3D printing technology, it will be possible to apply to various fields such as health education and medical service.

Human Limbs Modeling from 3D Scan Data (3차원 스캔 데이터로부터의 인체 팔, 다리 형상 복원)

  • Hyeon, Dae-Eun;Yun, Seung-Hyeon;Kim, Myeong-Su
    • Journal of the Korea Computer Graphics Society
    • /
    • v.8 no.4
    • /
    • pp.1-7
    • /
    • 2002
  • This paper presents a new approach for modeling human limbs shape from 3D scan data. Based on the cylindrical structure of limbs, the overall shape is approximated with a set of ellipsoids through ellipsoid fitting and interpolation of fit-ellipsoids. Then, the smooth domain surface representing the coarse shape is generated as the envelope surface of ellipsoidal sweep, and the fine details are reconstructed by constructing parametric displacement function on the domain surface. For fast calculation, the envelope surface is approximated with ellipse sweep surface, and points on the reconstructed surface are mapped onto the corresponding ellipsoid. We demonstrate the effectiveness of our approach for skeleton-driven body deformation.

  • PDF

Digital Elderly Human Body Modeling Part I : Standard Anthropometry and Exterior/Interior Geometries (디지털 고령 인체 모델 구축 Part I : 표준 Anthropometry 및 내외형상)

  • Han, Ji-Won;Choi, Hyung-Yun;Yoon, Kyong-Han;Park, Yo-Han
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.1
    • /
    • pp.96-104
    • /
    • 2009
  • An anatomically detailed elderly human body model is under development. Using the anthropometric database of domestic nation-wide size survey, SizeKorea, a standard size and shape of 50th %tile elderly was constructed. Through the local recruitment process, a male volunteer with 71 years of age, 163cm of height and 63kg of weight has been selected. The exterior (skin) and interior (skeleton and organ) geometries were acquired from whole body 3D laser scan and various medical images such as CT, X-ray, and Ultrasonic of the volunteer. A particular attention has been paid into the combining process of exterior and interior geometries especially for joint articulation positions since they were measured at different postures (sitting vs. supine). A whole ribcage of PMHS which possessed similar anthropometry and age of standard 50th %tile elderly was prepared and dissected for the precise gauge of cortical rib bone thickness distributions. After completing the morphological construction of elderly human body, the finite element modeling will be processed by meshing elements and assigning mechanical properties to various biological tissues which reflect the aging effect.

Digital Human Modeling for Human-centered CAD System (인간 친화적 설계 시스템을 위한 디지털 인체 모델 구성 연구)

  • Jung, Moon-Ki;Lee, Kun-Woo;Cho, Hyun-Deok;Kim, Tae-Woo;Yanzhao, Ma;Lee, Sang-Hun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.6
    • /
    • pp.429-440
    • /
    • 2007
  • The purpose of this research is to develop the Human-centered CAD system in which human factors can be considered during the design stage. For this system there are several issues to research, like the digital human modeling technology, the definition of interactions between human and product, the simulation of human motion when using the product, and the bio-mechanical analysis of human, etc. This paper introduces how to construct the kinematical structure of the digital human model. For our digital human model H-ANIM, the international specification of humanoid animation is referenced. And we added the skeleton geometry and the skin surfaces to our model. And it can manipulate its joints by forward kinematics. Also the IKAN inverse kinematics algorithm is adopted to support the posture prediction of the digital human model in the product environment. All of these ideas are implemented using CAD API so that we can apply these functions to the current commercial CAD systems. In this manner, the human factor issues can be effectively taken into account at the early design phase and the costs of bio-mechanical evaluation will be significantly reduced.

Single Image-Based 3D Tree and Growth Models Reconstruction

  • Kim, Jaehwan;Jeong, Il-Kwon
    • ETRI Journal
    • /
    • v.36 no.3
    • /
    • pp.450-459
    • /
    • 2014
  • In this paper, we present a new, easy-to-generate system that is capable of creating virtual 3D tree models and simulating a variety of growth processes of a tree from a single, real tree image. We not only construct various tree models with the same trunk through our proposed digital image matting method and skeleton-based abstraction of branches, but we also animate the visual growth of the constructed 3D tree model through usage of the branch age information combined with a scaling factor. To control the simulation of a tree growth process, we consider tree-growing attributes, such as branching orders, branch width, tree size, and branch self-bending effect, at the same time. Other invisible branches and leaves are automatically attached to the tree by employing parametric branch libraries under the conventional procedural assumption of structure having a local self-similarity. Simulations with a real image confirm that our system makes it possible to achieve realistic tree models and growth processes with ease.

Filing Experiments and Structural Analysis of Human Body (사격시험 및 인체구조해석)

  • Lee, Se-Hoon;Choi, Young-Jin;Choi, Eui-Jung;Chae, Je-Wook;Lee, Young-Shin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.7 s.262
    • /
    • pp.764-776
    • /
    • 2007
  • On the human-rifle system, the human body is affected by the firing impact. The firing impact will reduce the firing accuracy and change the initial shooting posture. Therefore the study of biomechanical characteristics using human-rifle modeling and numerical investigation is needed. The musculoskeletal model is developed by finite element method using beam and spar elements. In this study structural analysis has been performed in order to investigate the human body impact by firing of 5.56mm small caliber machine gun. The firing experiments with the standing shooting postures were performed to verify analytical results. The result if this study shows analytical displacements of the human-rifle system and experimental displacements of the real firing. As the results, the analytical displacement and stress of human body are presented.

Human Body Modeling Using Skin-Skeleton Binding Technique (스킨-스켈레턴 바인딩 기법을 이용한 인체 모델링)

  • Choi, Hae-Ock;Yoo, Tae-Sun;Jun, Byoung-Min
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.7
    • /
    • pp.1873-1882
    • /
    • 1998
  • 사실감있는 인체 모델과 동작제어 기술은 컴퓨터 그래픽스와 가상현실감 및 시뮬레이션등의 다양한 응용 분야에서 이용되고 있다. 인체의 모델링과 이의 동작을 제어하는 기술은 관절 구조의 인체를 뼈대와 관절 그리고 이를 둘러싸고 있는 피부로 모델링하고 운동학에 기반하여 각 관절을 제어하여 인체의 동작을 생성한다. 본 논문에서는 인체의 모델링을 위한 스킨-스켈레턴 바인딩 알고리즘을 제안한다. 인체의 골격구조를 관리하기 위한 일반적인 계층적 다관절체 데이터 구조를 설계하고, 골격 데이터에 피부를 입히기 위한 스킨-tm켈레던 바인딩 알고리즘을 설계한다. 제안된 알고리즘은 전처리, 세그멘테이션과 바인딩의 세기능 모듈로 구성된다. 바인딩 가능한 요소들의 효율적인 탐색을 위하여 분할해결 방식을 적용한 후보 테이블을 이용하였다. 20개의 관절로 이루어진 인체 골격 데이터와 Inventor 포맷의 인체 피부 데이터로 알고리즘을 실험하였다.

  • PDF

Approximated 3D non-homogeneous model for the buckling and vibration analysis of femur bone with femoral defects

  • Mobasseri, Saleh;Sadeghi, Mehdi;Janghorban, Maziar;Tounsi, Abdelouahed
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.5 no.1
    • /
    • pp.25-35
    • /
    • 2020
  • We carry the knowledge that the skeleton bones of the human body are not always without defects and some various defects could occur in them. In the present paper, as the first endeavor, free vibration and buckling analysis of femur bones with femoral defects are investigated. A major strength of this study is the modeling of defects in femur bones. Materialise Mimics software is adopted to model the bone geometry and the SOLIDWORKS software is used to generate the defects in bones. Next, the ABAQUS software is employed to study the behaviors of bones with defects.

Realistic 3D tree growth simulation from one image (한 장의 영상을 이용한 사실적 나무 생장표현)

  • Kim, Jae-Hwan;Jeong, Il-Kwon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06c
    • /
    • pp.362-363
    • /
    • 2012
  • 본 논문에서는 한 장의 실제 나무 영상이 주어졌을 시, 사실적인 3차원 나무 모델링(modeling) 및 자가생장(self-growth) 표현을 위한 방법을 소개하도록 한다. 스켈레톤기반의 간략화(skeleton-based abstraction)를 이용하여 동일한 나무 몸통(trunk)을 갖는 다양한 나무 모델생성과 함께 나무의 다면체구조(manifold structure)를 고려한 지오데식 커널(geodesic kernel)을 이용하여 나무의 자가생장을 표현한다. 나무의 자가생장은 사전 정의된 나무 굵기, 전체 크기, 그리고 가지증식 순서정보와 같은 상대적 성장정보(allometric information)를 동시 이용하여 상대적인 나무 생장(allometric tree growth)을 표현하도록한다. 한편, 보여지지않는 나무 가지와 잎들에 대해선, 나무구조는 로컬하게 자기유사성(local self-similarity)을 갖는다라는 고전적인 절차적(conventional procedural) 가정을 이용하여 자동적으로 생성토록한다. 실제영상을 이용한 몇몇들의 실험을 통해 보다 효과적으로 나무 모델 및 생장 표현이 가능함을 보여주도록한다.

Pose Estimation through 3D modeling based on NeRF (NeRF 기반 3차원 모델링을 통한 자세 추정)

  • Park, Chan;Kim, Hyungju;Moon, Nammee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.600-602
    • /
    • 2022
  • 2차원 이미지 또는 영상을 통한 자세 추정의 경우, 영상 내에서 발생할 수 있는 탐지 오류, 피사체 잘림, 폐색(Occlusion) 등으로 인해 자세 추정 정확도가 감소할 수 있다. 본 논문에서는 4장 이상의 다양한 각도로 촬영한 이미지를 NeRF(Neural Radiance Fields)를 통해 이미지 합성(Image synthesis)을 진행하여 3차원 모델을 생성한다. 이후 DeepLabCut을 사용하여 관절 좌표와 골격(Skeleton)을 구축한다. 구축한 골격을 인공지능에 학습시킨 뒤 2차원 영상에서의 관절 좌표 인식, 골격 구축, 자세 추정을 진행한다. 2차원 영상 테스트 데이터를 통해, 3차원 모델을 사전 학습한 인공지능 모델과 기존 2차원 이미지를 사용하여 학습한 인공지능 모델의 자세 추정 정확도를 비교한다.