• 제목/요약/키워드: Skeletal muscle

검색결과 1,249건 처리시간 0.027초

Archvillin C-Terminus-Binding Proteins in Human Skeletal Muscle

  • Chang, Goo-Rak
    • 대한의생명과학회지
    • /
    • 제16권4호
    • /
    • pp.207-212
    • /
    • 2010
  • Archivillin, a muscle-specific isoform of supervillin, is a component of the costameric cytoskeleton of muscle cells. The purpose of this study was to determine which protein in the skeletal muscle collaborates with archvillin C-terminus. For this purpose, a yeast two-hybrid screening of human skeletal muscle cDNA library was performed using the C-terminal region of archvillin as bait. This study shows that seven human skeletal muscle proteins, namely, nebulin, xeplin, archvillin, GAPDH, TOX4, PITRM1, and YME1L1 interact with archvillin C-terminus. Especially, xeplin is a newly discovered protein interacts with archvillin C-terminus. These results indicate that archvillin C-terminus acts as a bridge between nebulin and xeplin at costameres. Archvillin C-terminal region interacts with nebulin C-terminal region at Z-discs and interacts with xeplin at the vicinity of sarcolemma. I propose that these interactions may contribute to formation of costameric structure and muscle contraction.

Unraveling the Paradoxical Action of Androgens on Muscle Stem Cells

  • Seo, Ji-Yun;Kim, Ji-Hoon;Kong, Young-Yun
    • Molecules and Cells
    • /
    • 제42권2호
    • /
    • pp.97-103
    • /
    • 2019
  • Androgens act in almost all tissues throughout the lifetime and have important roles in skeletal muscles. The levels of androgens increase during puberty and remain sustained at high levels in adulthood. Because androgens have an anabolic effect on skeletal muscles and muscle stem cells, these increased levels of androgens after puberty should lead to spontaneous muscle hypertrophy and hyperplasia in adulthood. However, the maintenance of muscle volume, myonuclei number per myofiber, and quiescent state of satellite cells in adulthood despite the high levels of androgens produces paradoxical outcomes. Our recent study revealed that the physiological increase of androgens at puberty initiates the transition of muscle stem cells from proliferation to quiescence by the androgen-Mindbomb1-Notch signaling axis. This newly discovered androgen action on skeletal muscles underscores the physiological importance of androgens on muscle homeostasis throughout life. This review will provide an overview of the new androgen action on skeletal muscles and discuss the paradoxical effects of androgens suggested in previous studies.

골격근의 구조와 생역학에 관한 고찰 (A Review of Structure and Biomechanics of the Skeletal Muscle)

  • 공원태
    • 대한정형도수물리치료학회지
    • /
    • 제13권1호
    • /
    • pp.58-66
    • /
    • 2007
  • The purpose of this study is to understand the structure and biomechanics of the skeletal muscle. The skeletal muscle takes 40 to 45% of the whole body. Stable posture requires a balance of muscle. However, when the muscle strength is unbalanced, movement initiates. The power generated by the muscle is a primary means to adjust the equilibrium of posture and movement. The structural unit of the skeletal muscle is a long cylindrical type muscle fiber which contains hundreds of nucleus. The thickness of muscle fiber is about $10-100{\mu}m$, and its length is about 1-50cm. Muscle fiber is composed of myofibril that is covered with plasma membrane which is called sarcolemma. In understanding the movement of human body, it is important to comprehend the movement of bone and joint and the tension of muscle. Understanding the structure and biomechanics of muscle also provides basic information on clinical treatment of patients.

  • PDF

Postmortem skeletal muscle metabolism of farm animals approached with metabolomics

  • Susumu Muroya
    • Animal Bioscience
    • /
    • 제36권2_spc호
    • /
    • pp.374-384
    • /
    • 2023
  • Skeletal muscle metabolism regulates homeostatic balance in animals. The metabolic impact persists even after farm animal skeletal muscle is converted to edible meat through postmortem rigor mortis and aging. Muscle metabolites resulting from animal growth and postmortem storage have a significant impact on meat quality, including flavor and color. Metabolomics studies of postmortem muscle aging have identified metabolisms that contain signatures inherent to muscle properties and the altered metabolites by physiological adaptation, with glycolysis as the pivotal metabolism in postmortem aging. Metabolomics has also played a role in mining relevant postmortem metabolisms and pathways, such as the citrate cycle and mitochondrial metabolism. This leads to a deeper understanding of the mechanisms underlying the generation of key compounds that are associated with meat quality. Genetic background, feeding strategy, and muscle type primarily determine skeletal muscle properties in live animals and affect post-mortem muscle metabolism. With comprehensive metabolite detection, metabolomics is also beneficial for exploring biomarker candidates that could be useful to monitor meat production and predict the quality traits. The present review focuses on advances in farm animal muscle metabolomics, especially postmortem muscle metabolism associated with genetic factors and muscle type.

Temporal Pattern of cAMP Concentrations and α-Actin mRNA Expression in Skeletal Muscle of Cimaterol-Fed Rats

  • Kim, Y.S.;Duguies, M.V.;Kim, Y.H.;Vincent, D.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제10권5호
    • /
    • pp.528-533
    • /
    • 1997
  • Twenty four female Sprague-Dawley rats weighing about 190 g were used to examine changes in muscle cAMP concentrations and steady-state levels of skeletal muscle ${\alpha}$-actin mRNA during chronic administration of cimaterol, a ${\beta}$-adrenergic agonist. Cimaterol was mixed in a powdered rat diet at 10 mg/kg diet. At 3 and 21 days after the start of treatment, skeletal muscle and heart samples were collected for the measurement of cAMP concentrations and skeletal muscle ${\alpha}$-actin mRNA levels. Cimaterol increased (p < 0.01) body weight gain gradually during the first seven days of the trial period, but not thereafter. Most skeletal muscle weights and the ratio of muscle weight to body weight were increased (p < 0.05) by cimaterol treatment both at 3 and 21 days. Heart weight was also increased (p < 0.05) by cimaterol treatment at 3 and 21 days, but the ratio of heart weight to body weight was increased (p < 0.05) only at 3 day. Cimaterol decreased (p < 0.05) cAMP concentration of gastrocnemius muscle at both 3 and 21 days after treatment. However, cimaterol tended (p = 0.07) to increase cAMP concentration at 3 days in the heart. Cimaterol tended (p = 0.08) to increase the steady-state level of ${\alpha}$-actin mRNA by 60% in gastrocnemius muscle at 3 days but had no effect at 21 days. The results indicate that the pattern of hypertrophic response to chronic dietary administration of cimaterol is different between cardiac and skeletal muscle. In skeletal muscles it appears that the hypertrophy induced by cimaterol is partly due to stimulated myofibrillar protein synthesis at a pre-translational level.

교대 근무와 골격근 지수의 연관성 (Association between Shiftwork and Skeletal Muscle Mass Index)

  • 박영숙;채창호;이해정;김동희
    • 한국산업보건학회지
    • /
    • 제32권3호
    • /
    • pp.221-230
    • /
    • 2022
  • Objectives: The aim of this study is to evaluate the association between shiftwork and skeletal muscle mass index in a single university health check-up. Methods: We used data from 98,227 workers who answered in a special interview on health check-up at a local university hospital from 2014 to 2020. Pearson correlation analysis was conducted for comparing the association between skeletal muscle mass index and demographic and hematological variables in shiftwork and non-shiftwork groups. Mixed linear model analysis after controlling demographic and hematological variables was used to analyze the difference of skeletal muscle mass index between groups at every visit for seven years. Results: In linear regression analysis, the variables most significantly correlated with skeletal muscle index in both groups were shiftwork(p=0.049), BMI(p<0.001), hypertension(p=0.024), platelet(p<0.001), total protein (p<0.001), AST(p=0.028), ALT(p=0.003), ALP(p<0.001), total cholesterol(p=0.002), triglyceride(p=0.019), BUN (p=0.001), creatinine(p<0.001), and uric acid(p=0.002). After the adjustment for demographic and hematologic variables, the skeletal muscle mass index at every visit was decreased both in the shiftwork group and non-shiftwork group. The slope of the shiftwork group was -0.240 and non-shiftwork group -0.149, showing a significant difference (p<0.001). Conclusions: In the shiftwork group, the skeletal muscle mass index showed a tendency to decrease markedly over time compared to the non-shiftwork group. It is presumed that shift workers' skeletal muscle health was adversely affected by changes in the biological clock due to changes in wake-up and sleep patterns, and changes in food intake.

골격근의 활동 의존적 가소성 (Activity-dependent plasticity in skeletal muscle)

  • 김식현
    • PNF and Movement
    • /
    • 제6권1호
    • /
    • pp.41-51
    • /
    • 2008
  • Purpose : This paper reviews evidence supporting adaptive plasticity in skeletal muscle fibers induced by various exercise training and neuromuscular activity. Result : Skeletal muscle fiber demonstrates a remarkable adaptability and can adjust its physiologic and contractile makeup in response to alterations in functional demands. This adaptive plasticity results from the ability of muscle fibers to adjust their molecular, functional, and contractile properties in response to altered physiological demands, such as changes in exercise patterns and mechanical loading. The process of activity-dependent plasticity in skeletal muscle involves a multitude of signalling mechanisms initiating replication of specific genetic sequences, enabling subsequent translation of the genetic message and ultimately generating a series of myosin heavy chain isoform. Conclusions : Knowledge of the mechanisms and interaction of activity-dependent adaptive pathways in skeletal muscle is important for our understanding of the synthesis of muscle myosin protein, maintenance of metabolic and functional capacity with physical activity, and therapeutic intervention for functional improvement.

  • PDF

Regulation of skeletal muscle protein synthesis by amino acid and resistance exercise

  • Nakai, Naoya
    • 운동영양학회지
    • /
    • 제15권4호
    • /
    • pp.153-161
    • /
    • 2011
  • The maintenance of skeletal muscle mass is very important for the prevention of life style-related diseases and the improvement of quality of life. It is well-known that resistance exercise and nutrition (especially amino acids) are the most effective interventions for maintaining skeletal muscle mass. It has been reported that many molecules are involved in the regulation of protein synthesis in response to resistance exercise and nutrition. Understanding the molecular mechanisms regulating muscle protein synthesis is crucial for the development of appropriate interventions. The role of intracellular signaling pathways through the mammalian target of rapamycin (mTOR), a serine/threonine protein kinase in the regulation of muscle protein synthesis, has been extensively investigated for these years. Control of protein synthesis by mTOR is mediated through phosphorylation of downstream targets that modulate translation initiation and elongation step. In contrast, upstream mediators regulating mTOR and protein synthesis in response to resistance exercise and amino acid still needed to be determined. In this brief review, we discuss the current progress of intracellular mechanisms for exercise- and amino acid-induced activation of mTOR pathways and protein synthesis in skeletal muscle.

The Korean Traditional Anti-obesity drug Gyeongshingangjeehwan Stimulates $AMPK{\alpha}$ Activation in Skeletal Muscle of OLETF Rats

  • Shin, Soon-Shik;Yoon, Mi-Chung
    • 대한의생명과학회지
    • /
    • 제17권4호
    • /
    • pp.273-281
    • /
    • 2011
  • Our previous study demonstrated that the Korean traditional medicine Gyeongshingangjeehwan (GGEx) inhibits obesity and insulin resistance in obese type 2 diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats. We investigated whether GGEx may affect AMP-activated protein kinase ${\alpha}$ ($AMPK{\alpha}$) since $AMPK{\alpha}$ activation is known to stimulate fatty acid oxidation in skeletal muscle of obese rodents. After OLETF rats were treated with GGEx, we studied the effects of GGEx on $AMPK{\alpha}$ and acetyl-CoA carboxylase (ACC) phosphorylation, and the expression of $AMPK{\alpha}$, $PPAR{\alpha}$, and $PPAR{\alpha}$ target genes. The effects of GGEx on mRNA expression of the above genes were also measured in C2C12 skeletal muscle cells. Administration of GGEx to OLETF rats for 8 weeks increased phosphorylation of $AMPK{\alpha}$ and ACC in skeletal muscle. GGEx also elevated skeletal muscle mRNA levels of $AMPK{\alpha}1$ and $AMPK{\alpha}2$ as well as $PPAR{\alpha}$ and its target genes. Consistent with the in vivo data, similar activation of genes was observed in GGEx-treated C2C12 cells. These results suggest that GGEx stimulates skeletal muscle $AMPK{\alpha}$ and $PPAR{\alpha}$ activation, leading to alleviation of obesity and related disorders.

정상 골격근의 근전도 중앙주파수 및 초음파 영상 밀도 분석 (Analysis of sEMG Median frequency and Ultrasound Image Echodensity of Normal Skeletal Muscle)

  • 정진규;김용남;황태연;이정우;김태열
    • The Journal of Korean Physical Therapy
    • /
    • 제18권1호
    • /
    • pp.83-94
    • /
    • 2006
  • Purpose: This study conducts quantitative evaluation or structural and functional characteristics or normal skeletal muscle with ultrasound image and surface electromyography, and is to provide basic materials for utilizing ultrasound image analysis in physical therapy diagnosis and assessment of skeletal muscle. Methods: Measurement of three stages was conducted with 88 normal adults between their twenties and seventies, correlations and differences using collected data according to age and gender were compared and correlations among measured items were analyzed and then the following conclusions were obtained. Results: Analysis of ultrasound image of normal skeletal muscle showed that density, median frequency had the closest relations with age. In addition, it was found that there were high correlations between density explaining structural characteristics of skeletal muscle and median frequency explaining functional characteristics. Conclusion: Analysis of ultrasound image makes complex evaluation of structure and function of skeletal muscle possible when it is connected with functional evaluation method using physical measurement surface electromyography as well as quantitative evaluation of structural changes of skeletal muscle and is effective in complementing physical therapy diagnosis centering around functionality evaluation.

  • PDF