• Title/Summary/Keyword: Skeletal muscle

Search Result 1,249, Processing Time 0.025 seconds

MiR-188-5p regulates the proliferation and differentiation of goat skeletal muscle satellite cells by targeting calcium/calmodulin dependent protein kinase II beta

  • Jing Jing;Sihuan Zhang;Jinbo Wei;Yuhang Yang;Qi Zheng;Cuiyun Zhu;Shuang Li;Hongguo Cao;Fugui Fang;Yong Liu;Ying-hui Ling
    • Animal Bioscience
    • /
    • v.36 no.12
    • /
    • pp.1775-1784
    • /
    • 2023
  • Objective: The aim of this study was to reveal the role and regulatory mechanism of miR-188-5p in the proliferation and differentiation of goat muscle satellite cells. Methods: Goat skeletal muscle satellite cells isolated in the pre-laboratory were used as the test material. First, the expression of miR-188-5p in goat muscle tissues at different developmental stages was detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR). In addition, miR-188-5p was transfected into goat skeletal muscle satellite cells by constructing mimics and inhibitors of miR-188-5p, respectively. The changes of differentiation marker gene expression were detected by qPCR method. Results: It was highly expressed in adult goat latissimus dorsi and leg muscles, goat fetal skeletal muscle, and at the differentiation stage of muscle satellite cells. Overexpression and interference of miR-188-5p showed that miR-188-5p inhibited the proliferation and promoted the differentiation of goat muscle satellite cells. Target gene prediction and dual luciferase assays showed that miR-188-5p could target the 3'untranslated region of the calcium/calmodulin dependent protein kinase II beta (CAMK2B) gene and inhibit luciferase activity. Further functional studies revealed that CAMK2B promoted the proliferation and inhibited the differentiation of goat muscle satellite cells, whereas si-CAMK2B restored the function of miR-188-5p inhibitor. Conclusion: These results suggest that miR-188-5p inhibits the proliferation and promotes the differentiation of goat muscle satellite cells by targeting CAMK2B. This study will provide a theoretical reference for future studies on the molecular mechanisms of skeletal muscle development in goats.

Identification of Non-Muscle Nebulin Isoform in Human Brain Library

  • Joo, Young-Mi;Lee, Min-A;Choi, Pyung-Rak;Choi, Jae-Kyoung;Lee, Yeong-Mi;Choi, Su-Il;Kim, Myong-Shin;Jeon, Eun-Hee;Kim, So-Young;Kim, Chong-Rak
    • Biomedical Science Letters
    • /
    • v.10 no.1
    • /
    • pp.23-29
    • /
    • 2004
  • Nebulin is a (Mr 600∼900 kDa) large actin-binding protein specific to skeletal muscle and thought to act as a molecular template that regulates the length of thin filaments. Cardiac muscles of higher vertebrates have been shown earlier to lack nebulin. Recently, full-length nebulin mRNA transcripts have been detected in heart muscle, but at lower levels than in skeletal muscle. Nebulin expression also was detected in the kidney, eye, and otic canal, suggesting that nebulin isoforms may also be expressed in these organs. We have searched for nebulin isoforms in brain of human using PCR and Northern blot. Here, we provide evidence that nebulin mRNA transcripts are expressed in brain. Seven nebulin isoforms (B, C, D, E, F, G and H form) are obtained in human skeletal muscle and four isoforms (B, C, G and H form) in human brain cDNA library. We cloned the 1.3 kb of nebulin fragment from human adult brain library by PCR. The identity of the PCR product was confirmed by sequence analysis. The partial brain nebulin sequence was 99% identical to the skeletal muscle cDNA as determined by Blast alignment. It contains two simple-repeats HR1, HR2 and linker-repeats exon l35∼143 except exon 140. It was different from skeletal muscle B form, which contain HR1 and HR8. These data suggest that nebulin isoform diversity occurs even more extensively than previously known, likely contributing to the distinct thin filament architecture of different striated muscles.

  • PDF

Relationship of the Signal Transduction-mediated Proteins and Enzymes to Contractility and Plasticity in Skeletal Muscles (골격근의 수축과 가소성에 대한 신호전달-매개 단백질 및 관련 효소의 상관성)

  • Kim, Jung-Hwan
    • The Journal of Korean Physical Therapy
    • /
    • v.19 no.4
    • /
    • pp.1-14
    • /
    • 2007
  • Background: It is generally accepted that skeletal muscle contraction is triggered by nerve impulse and intracellular $Ca^{2+}\;([Ca^{2+}]_i)$ released from intracellular $Ca^{2+}$ stores such as sarcoplasmic reticulum (SR). Specifically, this process, called excitation-contraction (E-C) coupling, takes place at intracellular junctions between the plasma membrane, the transverse (T) tubule L-type $Ca^{2+}$ channel (dihydropyridine-sensitive L-rype $Ca^{2+}$ channel, DHPR, also called tetrads), and the SR $Ca^{2+}$ release channel (ryanodine-sensitive $Ca^{2+}$ release channel, RyR, also called feet) of internal $Ca^{2+}$ stores in skeletal muscle cells. Furthermore, it has been reported that the $Ca^{2+-}$ dependent and -independent contraction determine the expression of skeletal muscle genes, thus providing a mechanism for tightly coupling the extent of muscle contraction to regulation of muscle plasticity-related excitation-transcription (E-T) coupling. Purpose: Expression and activity of plasticity-associated enzymes in gastrocnemius muscle strips have not been well studied, however. Methods: Therefore, in this study the expression and phosphorylation of E-C and E-T coupling-related mediators such as protein kinases, ROS(reactive oxygen species)- and apoptosis-related substances, and others in gastrocnemius muscles from rats was examined. Results: I found that expression and activity of MAPKs (mitogen-activated protein kinases, ERK1/2, p38MAPK, and SAPK/JNK), apoptotic proteins (cleaved caspase-3, cytochrome c, Ref-1, Bad), small GTP-binding proteins (RhoA and Cdc42), actin-binding protein (cofilin), PKC (protein kinase C) and $Ca^{2+}$ channel (transient receptor potential channel 6, TRPC6) was observed in rat gastrocnemius muscle strips. Conclusion: These results suggest that MAPKs, ROS- and apoptosis-related enzymes, cytoskeleton-regulated proteins, and $Ca^{2+}$ channel may in part functionally import in E-C and E-T coupling from rat skeletal muscles.

  • PDF

The effects of aqua-exercise on the muscle atrophy of hind limb in rats

  • Cho sun-yeo
    • The Journal of Korean Physical Therapy
    • /
    • v.14 no.3
    • /
    • pp.373-406
    • /
    • 2002
  • This study was peformed to investigate the effects on skeletal muscle recovery with aqua-exercise; swimming to take the muscle endurance for 20 days on two group of white rats which were the low extremity atrophy group(control groups) by fixed for two weeks and aqua-exercise group(experimental groups) after it. The effects was observed with light and electron microcope to measure the morphological changes of muscle fibers. The results obtained were as follow. 1. Light microscope: In the case of control groups, quadriceps fibers had been irregular alignment, decreased muscle width and the irregular alignment nuclear appeared, as it is degenerative muscle fibers. In the case of experimental groups, the fibers had been regular alignment cells and fibers. The nucleus of muscle had been normal characterized by oval shape and fiber sarcomere clearly classified. 2. Electron microscope: In the case of control groups, there were the quadriceps which was Z-line streaming phenomenon induced at the sarcomere and cells nuclear separated from basal membrane. It was not only observed the sarcomere alignment irregularly and mitochondria damaged, but also vacuoles found. In the case of experimental groups, A band, I band, H band had been clearly appeared, classified at the myofibrils of quadriceps, and electronic dense M-line found in sarcomere. There were observed satellite cells and basal laminas that usually to be appeared at the time of mitochondrial development, skeletal muscle fiber regeneration or development. This results suggest that the aqua-exercise assisted to inhibit the degenerative morphological changes of skeletal muscle cells and help to recover from abnormal states. Especially, it is considered to effect on a normal structural formation.

  • PDF

Role of IL-15 in Sepsis-Induced Skeletal Muscle Atrophy and Proteolysis

  • Kim, Ho Cheol;Cho, Hee-Young;Hah, Young-Sool
    • Tuberculosis and Respiratory Diseases
    • /
    • v.73 no.6
    • /
    • pp.312-319
    • /
    • 2012
  • Background: Muscle wasting in sepsis is associated with increased proteolysis. Interleukin-15 (IL-15) has been characterized as an anabolic factor for skeletal muscles. Our study aims to investigate the role of IL-15 in sepsis-induced muscle atrophy and proteolysis. Methods: Mice were rendered septic either by cecal ligation and puncture or by intraperitoneal injection of lipopolysaccharide (LPS, 10 mg/kg i.p.). Expression of IL-15 mRNA and protein was determined by reverse transcriptase polymerase chain reaction and Western blot analysis in the control and septic limb muscles. C2C12 skeletal muscle cells were stimulated in vitro with either LPS or dexamethasone in the presence and absence of IL-15 and sampled at different time intervals (24, 48, or 72 hours). IL-15 ($10{\mu}g/kg$) was intraperitoneally administered 6 hours before sepsis induction and limb muscles were sampled after 24 hours of sepsis. Cathepsin L activity was determined to measure muscle proteolysis. Atrogin-1 and muscle-specific ring finger protein 1 (MuRF1) expressions in limb muscle protein lysates was analyzed. Results: IL-15 mRNA expression was significantly lower in the limb muscles of septic mice compared to that of controls. Cathepsin L activity in C2C12 cells was significantly lower in presence of IL-15, when compared to that observed with individual treatments of LPS or dexamethasone or tumor necrosis factor ${\alpha}$. Further, the limb muscles of mice pre-treated with IL-15 prior to sepsis induction showed a lower expression of atrogin-1 and MuRF1 than those not pre-treated. Conclusion: IL-15 may play a role in protection against sepsis-induced muscle wasting; thereby, serving as a potential therapeutic target for sepsis-induced skeletal muscle wasting and proteolysis.

Mitochondrial oxidative phosphorylation complexes exist in the sarcolemma of skeletal muscle

  • Lee, Hyun;Kim, Seung-Hyeob;Lee, Jae-Seon;Yang, Yun-Hee;Nam, Jwa-Min;Kim, Bong-Woo;Ko, Young-Gyu
    • BMB Reports
    • /
    • v.49 no.2
    • /
    • pp.116-121
    • /
    • 2016
  • Although proteomic analyses have revealed the presence of mitochondrial oxidative phosphorylation (OXPHOS) proteins in the plasma membrane, there have been no in-depth evaluations of the presence or function of OXPHOS I-V in the plasma membrane. Here, we demonstrate the in situ localization of OXPHOS I-V complexes to the sarcolemma of skeletal muscle by immunofluorescence and immunohistochemistry. A portion of the OXPHOS I-V complex proteins was not co-stained with MitoTracker but co-localized with caveolin-3 in the sarcolemma of mouse gastrocnemius. Mitochondrial matrix-facing OXPHOS complex subunits were ectopically expressed in the sarcolemma of the non-permeabilized muscle fibers and C2C12 myotubes. The sarcolemmal localization of cytochrome c was also observed from mouse gastrocnemius muscles and C2C12 myotubes, as determined by confocal and total internal resonance fluorescence (TIRF) microscopy. Based on these data, we conclude that a portion of OXPHOS complexes is localized in the sarcolemma of skeletal muscle and may have non-canonical functions.

Cloning and characterization of a cDNA encoding a paired box protein, PAX7, from black sea bream, Acanthopagrus schlegelii

  • Choi, Jae Hoon;Han, Dan Hee;Gong, Seung Pyo
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.36 no.4
    • /
    • pp.314-322
    • /
    • 2021
  • Paired box protein, PAX7, is a key molecule for the specification, maintenance and skeletal muscle regeneration of muscle satellite cells. In this study, we identified and characterized the cDNA and amino acid sequences of PAX7 from black sea bream (Acanthopagrus schlegelii) via molecular cloning and sequence analysis. A. schlegelii PAX7 cDNA was comprised of 1,524 bp encoding 507 amino acids and multiple sequence alignment analysis of the translated amino acids showed that it contained three domains including paired DNA-binding domain, homeobox domain and OAR domain which were well conserved across various animal species investigated. Pairwise Sequence Alignment indicated that A. schlegelii PAX7 had the same amino acid sequences with that of yellowfin seabream (A. latus) and 99.8% identity and similarity with that of gilt-head bream (Sparus aurata). Molecular phylogenetic analysis confirmed that A. schlegelii PAX7 formed a monophyletic group with those of teleost and most closely related with those of the fish that belong to Sparidae family including A. latus and S. aurata. In the investigation of its tissue specific mRNA expression, the expression was specifically identified in skeletal muscle tissue and a weak expression was also shown in gonad tissue. The cultured cells derived from skeletal muscle tissues expressed PAX7 mRNA at early passage but the expression was not observed after several times of subculture.

Potential Predictive Indicators for Age-Related Loss of Skeletal Muscle Mass in Community-Dwelling Middle-Aged Women

  • Jongseok Hwang
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.19 no.3
    • /
    • pp.47-54
    • /
    • 2024
  • PURPOSE: This study aimed to identify the potential clinically predictive indicators of the age-related loss of skeletal muscle mass (ALSMM) in middle-aged women. METHODS: The data from a cross-sectional study involving 2,066 community-dwelling female participants aged 40 to 49 years were analyzed. Complex sampling analyses were used to ensure a nationally representative analysis, incorporating the individual weights provided by KNHANES. This approach accounted for the stratified, clustered, and multistage probability sampling design of the survey. The participants were screened for ALSMM, and various potential predictive indicators were assessed, including age, height, weight, body mass index, waist circumference, skeletal muscle mass index, smoking and drinking status, systolic and diastolic blood pressure, fasting glucose levels, triglyceride levels, and cholesterol levels. RESULTS: Significant potential predictive indicators for ALSMM included height, weight, body mass index, waist circumference, skeletal muscle mass index, and fasting glucose (p < .05). The systolic blood pressure, diastolic blood pressure, triglyceride levels triglyceride, and drinking and smoking status were found to be non-significant variables (p > .05). CONCLUSION: The study identified the potential predictive indicators for ALSMM among community-dwelling middle-aged women. These findings enhance the current understanding of ALSMM and highlight the potential predictive indicators associated with its development in middle-aged women.

Isolation and identification of goose skeletal muscle satellite cells and preliminary study on the function of C1q and tumor necrosis factor-related protein 3 gene

  • Wang, Han;He, Ke;Zeng, Xuehua;Zhou, Xiaolong;Yan, Feifei;Yang, Songbai;Zhao, Ayong
    • Animal Bioscience
    • /
    • v.34 no.6
    • /
    • pp.1078-1087
    • /
    • 2021
  • Objective: Skeletal muscle satellite cells (SMSCs) are significant for the growth, regeneration, and maintenance of skeletal muscle after birth. However, currently, few studies have been performed on the isolation, culture and inducing differentiation of goose muscle satellite cells. Previous studies have shown that C1q and tumor necrosis factor-related protein 3 (CTRP3) participated in the process of muscle growth and development, but its role in the goose skeletal muscle development is not yet clear. This study aimed to isolate, culture, and identify the goose SMSCs in vitro. Additionally, to explore the function of CTRP3 in goose SMSCs. Methods: Goose SMSCs were isolated using 0.25% trypsin from leg muscle (LM) of 15 to 20 day fertilized goose eggs. Cell differentiation was induced by transferring the cells to differentiation medium with 2% horse serum and 1% penicillin streptomycin. Immunofluorescence staining of Desmin and Pax7 was used to identify goose SMSCs. Quantitative realtime polymerase chain reaction and western blot were applied to explore developmental expression profile of CTRP3 in LM and the regulation of CTRP3 on myosin heavy chains (MyHC), myogenin (MyoG) expression and Notch signaling pathway related genes expression. Results: The goose SMSCs were successfully isolated and cultured. The expression of Pax7 and Desmin were observed in the isolated cells. The expression of CTRP3 decreased significantly during leg muscle development. Overexpression of CTRP3 could enhance the expression of two myogenic differentiation marker genes, MyHC and MyoG. But knockdown of CTRP3 suppressed their expression. Furthermore, CTRP3 could repress the mRNA level of Notch signaling pathway-related genes, notch receptor 1, notch receptor 2 and hairy/enhancer-of-split related with YRPW motif 1, which previously showed a negative regulation in myoblast differentiation. Conclusion: These findings provide a useful cell model for the future research on goose muscle development and suggest that CTRP3 may play an essential role in skeletal muscle growth of goose.

Ishige okamurae reduces blood glucose levels in high-fat diet mice and improves glucose metabolism in the skeletal muscle and pancreas

  • Yang, Hye-Won;Son, Myeongjoo;Choi, Junwon;Oh, Seyeon;Jeon, You-Jin;Byun, Kyunghee;Ryu, Bo Mi
    • Fisheries and Aquatic Sciences
    • /
    • v.23 no.9
    • /
    • pp.24.1-24.9
    • /
    • 2020
  • Brown alga (Ishige okamurae; IO) dietary supplements have been reported to possess anti-diabetic properties. However, the effects of IO supplements have not been evaluated on glucose metabolism in the pancreas and skeletal muscle. C57BL/6 N male mice (age, 7 weeks) were arranged in five groups: a chow diet with 0.9% saline (NFD/saline group), high-fat diet (HFD) with 0.9% saline (HFD/saline group). high-fat diet with 25 mg/kg IO extract (HFD/25/IOE). high-fat diet with 50 mg/kg IO extract (HFD/50/IOE), and high-fat diet with 75 mg/kg IO extract (HFD/75/IOE). After 4 weeks, the plasma, pancreas, and skeletal muscle samples were collected for biochemical analyses. IOE significantly ameliorated glucose tolerance impairment and fasting and 2 h blood glucose level in HFD mice. IOE also stimulated the protein expressions of the glucose transporters (GLUTs) including GLUT2 and GLUT4 and those of their related transcription factors in the pancreases and skeletal muscles of HFD mice, enhanced glucose metabolism, and regulated blood glucose level. Our results suggest Ishige okamurae extract may reduce blood glucose levels by improving glucose metabolism in the pancreas and skeletal muscle in HFD-induced diabetes.