• Title/Summary/Keyword: Skeletal muscle

Search Result 1,214, Processing Time 0.028 seconds

Age Related Analysis of Ultrasound Images of Normal Skeletal Muscle (연령에 따른 정상 골격근의 초음파 영상 분석)

  • Jeong, Jin-Gyu;Kim, Kye-Yoep;Kim, Jong-Man;Ki, Tae-Youl
    • Physical Therapy Korea
    • /
    • v.13 no.1
    • /
    • pp.47-53
    • /
    • 2006
  • Since ultrasound has different reflections depending on components of organization, analysis of ultrasound images of skeletal muscle can offer both quantitative and qualitative reports as concerns skeletal muscle structure. This study is focused on the ultrasound method for evaluating the structural characteristics of skeletal muscle and also conducted to examine its practicality. After obtaining images of the elbow flexors from an ultrasound image device with 88 normal subjects whose ages were between twenty and seventy years old (44 men and 44 women), muscular density and white area index (WAI) which indicated structural characteristics of skeletal muscle were analyzed with gray scale analysis. The study examined correlations between subject's age and items which obtained from measuring ultrasound images and the differences in relations to sex and age. Muscular density and WAI had a high correlation with age and were significantly increased in men and women with greater age. The quantitative evaluation method of skeletal muscle structure which analyzed the ultrasound images has high practicality because it is a non-invasive method which complements physical therapy diagnosis and research methods and promotes functionality evaluation.

  • PDF

Functional and Immunological Properties of Ryanodine Receptor in the Eel Skeletal Muscle (뱀장어 근육내 Ryanodine Receptor의 기능 및 면역학적 성질)

  • Seok, Jeong-Ho;Lee, Yeon-Soo;Nam, Jang-Hyeon;Choi, Suk-Jeong;Hong, Jang-Hee;Lee, Jae-Heun
    • The Korean Journal of Pharmacology
    • /
    • v.31 no.2
    • /
    • pp.207-217
    • /
    • 1995
  • To investigate the functional and immunological properties of the Ca-release channel in the sarcoplasmic reticulum(SR) of the eel skeletal muscle, $[^3H]ryanodine$ binding, SDS gel electrophoresis, $^{45}Ca\;release$ studies, and immunoblot assay were carried out in the SR of the eel skeletal muscle. Maximal binding sites(Bmax) and $K_D$ values of $[^3H]ryanodine$ for Ca-release channel of the SR of the eel skeletal muscle were $19.44{\pm}1.40\;pmole/mg$ protein and $15.55{\pm}1.69\;nM$, respectively. $[^3H]Ryanodine$ binding to RyR was increased by calcium and AMP. The SR of the eel skeletal muscle has two high molecular weight bands on the SDS PAGE. The mobility of upper band was more slower than the single band of the rabbit skeletal muscle, and that of the lower band was similar with the single band of canine cardiac muscle. Vesicular $^{45}Ca-release$ was activated by calcium. Ca-induced $^{45}Ca-release$ was significantly inhibited by $MgCl_2(2\;mM)$, ruthenium red$(10\;{/mu}M)$ or tetracaine(1 mM), but not by high concentration of calcium itself. AMP-induced $^{45}Ca-release$ was slightly occurred only in the absence of calcium, it was not inhibited by $MgCl_2$ or ruthenium red. Caffeine also increased $^{45}Ca-release$ from the SR vesicles, but it was not affected by $MgCl_2$ or ruthenium red. Polyclonal Ab against rat skeletal muscle RyR is reacted with that of rabbit, but not reacted with that of the eel skeletal muscle. These results suggested that ryanodine receptor of the SR of the eel skeletal muscle is showing some similar properties with that of mammalian skeletal muscle, but might be an another isotype channel having two bands which is less sensitive to AMP, not cross-reacted with antisera against rat RyR, and not inhibited by high concentration of calcium.

  • PDF

Glycolysis Mediated Sarcoplasmic Reticulum Ca2+ Signal Regulates Mitochondria Ca2+ during Skeletal Muscle Contraction (근수축시 해당작용에 의한 근형질 세망의 Ca2+ 변화가 미토콘드리아 Ca2+ 증가에 미치는 영향)

  • Park, Dae-Ryoung
    • Exercise Science
    • /
    • v.26 no.3
    • /
    • pp.229-237
    • /
    • 2017
  • PURPOSE: This study was to investigate the Glycolysis mediated sarcoplasmic reticulum (SR) $Ca^{2+}$ signal regulates mitochondria $Ca^{2+}$ during skeletal muscle contraction by using glycolysis inhibitor. METHODS: To examine the effect of Glycolysis inhibitor on SR and mitochondria $Ca^{2+}$ content, we used skeletal muscle fiber from gastrocnemius muscle. 2-deoxy glucose and 3-bromo pyruvate used as glycolysis inhibitor, it applied to electrically stimulated muscle contraction experiment. Intracellular $Ca^{2+}$ content, SR, mitochondria $Ca^{2+}$ level and mitochondria membrane potential (MMP) was detected by confocal microscope. Mitochondrial energy metabolism related enzyme, citric acid synthase activity also examined for mitochondrial function during the muscle contraction. RESULTS: Treatment of 2-DG and 3BP decreased the muscle contraction induced SR $Ca^{2+}$ increase however the mitochondria $Ca^{2+}$ level was increased by treatment of inhibitors and showed and overloading as compared with the control group. Glycolysis inhibitor and thapsigargin treatment showed a significant decrease in MPP of skeletal muscle cells compared to the control group. CS activity significantly decreased after pretreatment of glycolysis inhibitor during skeletal muscle contraction. These results suggest that regulation of mitochondrial $Ca^{2+}$ levels by glycolysis is an important factor in mitochondrial energy production during skeletal muscle contraction CONCLUSIONS: These results suggest that mitochondria $Ca^{2+}$ level can be regulated by SR $Ca^{2+}$ level and glycolytic regulation of intraocular $Ca^{2+}$ signal play pivotal role in regulation of mitochondria energy metabolism during the muscle contraction.

Effects of Exercise on the Physiological Changes of Aging Skeletal Muscle (운동이 노화로 인한 골격근의 생리적 변화에 미치는 영향)

  • Song, Ju-Young;Kim, Jin-Sang
    • Physical Therapy Korea
    • /
    • v.5 no.1
    • /
    • pp.63-78
    • /
    • 1998
  • The decrease of muscle power and muscle size between twenties and seventies was about 30% and 40% respectively. The loss of muscle mass by aging resulted in the decrease of muscle power. The loss of muscle mass was due to the decrease of number of Type I fiber and Type II fiber and size of each muscle fiber. The aging skeletal muscle didn't show the loss of glycolysis capacity but showed 20% decrease of the oxidative enzymes and muscle vascularization. The vigorous endurance exercise training with graded intensity played a role in the vascular proliferation, increase of activity of oxidative enzymes and improvement of $VO_2$ max. The graded resistance exercise also played a role in the muscle hypertrophy and increase of muscle power, if it performed with adequate intensity and period. The exercise adaptation of aging skeletal muscle prevented it from sarcopenia, provided the activity of daily living with great effect and provided the aging related disease, that is Type II diabetes mellitus, arteriosclerosis, hypertension, osteoporosis and obesity, with great effect.

  • PDF

Multifocal Skeletal Muscle Metastasis from Kidney Cancer (Transitional Cell Carcinoma) - A Case Report - (신장암의 다발성 골격근 전이 - 1례 보고 -)

  • Rhee, Seung-Koo;Kang, Yong-Koo;Park, Won-Jong;Chung, Jin-Wha;Sur, Yoo-Joon
    • The Journal of the Korean bone and joint tumor society
    • /
    • v.8 no.2
    • /
    • pp.48-53
    • /
    • 2002
  • Although direct skeletal muscle invasion by carcinoma is well recognized, distant metastasis to skeletal muscle is uncommon. Furthermore, multifocal skeletal muscle metastasis is a very exceptional event. Some factors such as variable intra-muscular blood flow, mechanical factors including turbulent blood flow and muscle contraction, intra-muscular acidic condition, lactic acid, protease inhibitors in the extra-cellular matrix were proposed as causes of the rarity of distant metastasis to skeletal muscle. We report here a case of a 67 year old male who had multifocal skeletal muscle metastasis from the transitional cell carcinoma of left kidney.

  • PDF

Review of Effect of the Mechanical Stress on Muscle (근육에 대한 역학적 스트레스의 영향)

  • Kang, Jong-Ho;Kim, Jin-Sang
    • PNF and Movement
    • /
    • v.6 no.2
    • /
    • pp.51-57
    • /
    • 2008
  • Purpose : Mechanical stress activates signaling cascades and leading to a specific response of a network of signaling pathways. The purpose of this study is to review the effect of mechanical stress-induced adaptation in skeletal muscle involves a biological mechanisms. Methods : This is literature study with Pubmed, Medline and books. Results : Skeletal muscle tissue demonstrates a malleability and may adjust its metabilic response, vascularization and neuromuscular characteristic makeup in response to alteration in functional demands. The adaptation in skeletal muscle involoves a multitude of signalling mechanisms related with insuline-like growth factor, vascular endothelial growth factor, neurotrophins. Conclusions : The identification of the basic relationships underlying the malleability of skeletal muscle tissue is likely to be of relevance for our understanding with PNF technique.

  • PDF

A Review of Journals on the Aging Skeletal Muscle (골격근의 노화에 대한 고찰)

  • Kwon, Oh-Bong;Song, Yun-Kyung;Lim, Hyung-Ho
    • The Journal of Korea CHUNA Manual Medicine
    • /
    • v.4 no.1
    • /
    • pp.55-65
    • /
    • 2003
  • The purpose of this article was to contribute to the knowledge of physiological and pathological changes of aging skeletal muscles, and of therapic method. By aging there were changes of distribution of muscle fibers, the loss of muscle mass, the loss of the number of muscle fibers, the loss of glycolysis capacity, the decrease of the oxidative enzymes and muscle vascularization in the skeletal muscles. And as a pathological change, the exhaustive maximal exercise increased oxidative stress that led to oxidative damage which were shown to be implicated in promoting aging. The property of intensity and duration exercise is important not only in keeping human health and physical fitness from oxidative stress, but also for the maintenance of well-being and quality of life.

  • PDF

A Study on the Stress and Strain Analysis of Human Muscle Skeletal Model in Kendo Three Typical Attack Motions (세 가지 주요 검도 공격 동작에서의 근-골격계 응력과 번형률 해석에 관한 연구)

  • Lee, Jung-Hyun;Lee, Young-Shin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.9
    • /
    • pp.126-134
    • /
    • 2008
  • Kendo is one of the popular sports in modem life. Head, wrist and thrust attack are the fast skill to get a score on a match. Human muscle skeletal model was developed for biomechanical study. The human model was consists with 19 bone-skeleton and 122 muscles. Muscle number of upper limb, trunk and lower limb part are 28, 60, 34 respectively. Bone was modeled with 3D beam element and muscle was modeled with spar element. For upper limb muscle modelling, rectus abdominis, trapezius, deltoideus, biceps brachii, triceps brachii muscle and other main muscles were considered. Lower limb muscle was modeled with gastrocenemius, gluteus maximus, gluteus medius and related muscles. The biomechanical stress and strain analysis of human muscle was conducted by proposed human bone-muscle finite element analysis model under head, wrist and thrust attack for kendo training.

Insulin-Like Growth Factor-I-Induced Androgen Receptor Activation Is Mediated by the PI3K/Akt Pathway in C2C12 Skeletal Muscle Cells

  • Lee, Won Jun
    • Molecules and Cells
    • /
    • v.28 no.5
    • /
    • pp.495-499
    • /
    • 2009
  • Although insulin-like growth factor-I (IGF-I) and androgen receptor (AR) are well known effectors of skeletal muscle, the molecular mechanism by which signaling pathways integrating AR and IGF-I in skeletal muscle cells has not been previously examined. In this study, the role of PI3K/Akt on IGF-I-induced gene expression and activation of AR in skeletal muscle cells was investigated. C2C12 cells were treated with IGF-I in the absence or presence of inhibitors of PI3K/Akt pathway (LY294002 and Wortmannin). Inhibition of the PI3K/Akt pathway with LY294002 or Wortmannin led to a significant decrease in IGF-I-induced AR phosphorylation and total AR protein expression. Furthermore, IGF-I-induced AR mRNA and skeletal ${\alpha}-actin$ mRNA were blocked by LY294002 or Wortmannin. Confocal images showed that IGF-I-induced AR translocation from cytosol to nucleus was inhibited significantly in response to treatment with LY294002 or Wortmannin. The present results suggest that modulating effect of IGF-I on AR gene expression and activation in C2C12 mouse skeletal muscle cells is mediated at least in part by the PI3K/Akt pathway.

Neurochemical Characterization of the TRPV1-Positive Nociceptive Primary Afferents Innervating Skeletal Muscles in the Rats

  • Shin, Dong-Su;Kim, Eun-Hyun;Song, Kwan-Young;Hong, Hyun-Jong;Kong, Min-Ho;Hwang, Se-Jin
    • Journal of Korean Neurosurgical Society
    • /
    • v.43 no.2
    • /
    • pp.97-104
    • /
    • 2008
  • Objective: Transient receptor potential vanilloid subfamily type 1 (TRPV1), a most specific marker of the nociceptive primary afferent, is expressed in peptidergic and non-peptidergic primary afferents innervating skin and viscera. However, its expression in sensory fibers to skeletal muscle is not well known. In this study, we studied the neurochemical characteristics of TRPV1-positive primary afferents to skeletal muscles. Methods: Sprague-Dawley rats were injected with total $20{\mu}l$ of 1% fast blue (FB) into the gastrocnemius and erector spinae muscle and animals were perfused 4 days after injection. FB-positive cells were traced in the L4-L5 (for gastrocnemius muscle) and L2-L4 (for erector spinae muscle) dorsal root ganglia. The neurochemical characteristics of the muscle afferents were studied with multiple immunofluorescence with TRPV1, calcitonin gene-related peptide (CGRP) and $P2X_3$. To identify spinal neurons responding to noxious stimulus to the skeletal muscle, 10% acetic acids were injected into the gastrocnemius and erector spinae muscles and expression of phospho extracellular signal-regulated kinase (pERK) in spinal cords were identified with immunohistochemical method. Results: TRPVl was expressed in about 49% of muscle afferents traced from gastrocnemius and 40% of erector spinae. Sixty-five to 60% of TRPV1-positive muscles afferents also expressed CGRP. In contrast, expression of $P2X_3$ immnoreaction in TRPV1-positive muscle afferents were about 20%. TRPV1-positive primary afferents were contacted with spinal neurons expressing pERK after injection of acetic acid into the muscles. Conclusion: It is consequently suggested that nociception from skeletal muscles are mediated by TRPV1-positive primary afferents and majority of them are also peptidergic.