• Title/Summary/Keyword: Skeletal effects

Search Result 651, Processing Time 0.027 seconds

The Korean Traditional Medicine Gyeongshingangjeehwan Reduces Lipid Accumulation in Skeletal Muscle and C2C12 Cells

  • Yoon, Mi-Chung
    • Biomedical Science Letters
    • /
    • v.17 no.4
    • /
    • pp.283-289
    • /
    • 2011
  • Our previous study demonstrated that the Korean traditional medicine Gyeongshingangjeehwan (GGEx) activates AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor ${\alpha}$ ($PPAR{\alpha}$) critical for fatty acid oxidation in skeletal muscle and C2C12 skeletal muscle cells. Thus, we examined whether GGEx can reduce lipid accumulation in these cells and tissues. After obese and type 2 diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats were treated with GGEx, we studied the effects of GGEx on skeletal muscle lipid accumulation. The effects of GGEx and/or the AMPK inhibitor compound C on lipid accumulation and expression of AMPK and $PPAR{\alpha}$ were measured in C2C12 skeletal muscle cells. Compared with lean Long-Evans Tokushima Otsuka rats, obese OLETF rats had increased triglyceride droplets. However, administration of GGEx to OLETF rats for 8 weeks significantly decreased triglyceride droplets in skeletal muscle. Consistent with the $in$ $vivo$ data, GGEx inhibited lipid accumulation, the degree of which was comparable to Wy14,643, the potent activator of $PPAR{\alpha}$. GGEx also increased skeletal muscle mRNA levels of AMPK${\alpha}1$, AMPK${\alpha}2$, and $PPAR{\alpha}$. However, compound C inhibited these effects in C2C12 cells. These results suggest that GGEx suppresses skeletal muscle lipid accumulation and this process may be mediated by AMPK and $PPAR{\alpha}$ activation.

Effects of exercise on myokine gene expression in horse skeletal muscles

  • Lee, Hyo Gun;Choi, Jae-Young;Park, Jung-Woong;Park, Tae Sub;Song, Ki-Duk;Shin, Donghyun;Cho, Byung-Wook
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.3
    • /
    • pp.350-356
    • /
    • 2019
  • Objective: To examine the regulatory effects of exercise on myokine expression in horse skeletal muscle cells, we compared the expression of several myokine genes (interleukin 6 [IL-6], IL-8, chemokine [C-X-C motif] ligand 2 [CXCL2], and chemokine [C-C motif] ligand 4 [CCL4]) after a single bout of exercise in horses. Furthermore, to establish in vitro systems for the validation of exercise effects, we cultured horse skeletal muscle cells and confirmed the expression of these genes after treatment with hydrogen peroxide. Methods: The mRNA expression of IL-6, IL-8, CXCL2, and CCL4 after exercise in skeletal muscle tissue was confirmed using quantitative-reverse transcriptase polymerase chain reactions (qRT-PCR). We then extracted horse muscle cells from the skeletal muscle tissue of a neonatal Thoroughbred. Myokine expression after hydrogen peroxide treatments was confirmed using qRT-PCR in horse skeletal muscle cells. Results: IL-6, IL-8, CXCL2, and CCL4 expression in Thoroughbred and Jeju horse skeletal muscles significantly increased after exercise. We stably maintained horse skeletal muscle cells in culture and confirmed the expression of the myogenic marker, myoblast determination protein (MyoD). Moreover, myokine expression was validated using hydrogen peroxide ($H_2O_2$)-treated horse skeletal muscle cells. The patterns of myokine expression in muscle cells were found to be similar to those observed in skeletal muscle tissue. Conclusion: We confirmed that several myokines involved in inflammation were induced by exercise in horse skeletal muscle tissue. In addition, we successfully cultured horse skeletal muscle cells and established an in vitro system to validate associated gene expression and function. This study will provide a valuable system for studying the function of exercise-related genes in the future.

Cortisone 및 Calcium이 국소마취약의 Acetylcholine 근련축억제효과에 미치는 영향

  • Baei, Yu-Hong;Hahm, Jhong-Dai;Lee, Sang-Sin
    • The Journal of the Korean dental association
    • /
    • v.12 no.6
    • /
    • pp.419-423
    • /
    • 1974
  • The authors have investigated the roles of cortisone and calcium on the depressive effects of local anesthetics on the acetylcholine-induced skeletal muscle contraction in frog. The results are as follows. 1. Tetracaine, cocaine, lidocaine and procaine decreased the acetylcholine-induced skeletal muscle contraction. 2. Cortisone increased the depressive effects of local anesthetics on the acetyl-choline-induced skeletal muscle contraction. 3. There was a tendency that in high calcium concentration, the depressive effects of cocaine and lidocaine on acetylcholine-induced skeletal muscle contraction were increased.

  • PDF

The Korean Traditional Anti-obesity drug Gyeongshingangjeehwan Stimulates $AMPK{\alpha}$ Activation in Skeletal Muscle of OLETF Rats

  • Shin, Soon-Shik;Yoon, Mi-Chung
    • Biomedical Science Letters
    • /
    • v.17 no.4
    • /
    • pp.273-281
    • /
    • 2011
  • Our previous study demonstrated that the Korean traditional medicine Gyeongshingangjeehwan (GGEx) inhibits obesity and insulin resistance in obese type 2 diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats. We investigated whether GGEx may affect AMP-activated protein kinase ${\alpha}$ ($AMPK{\alpha}$) since $AMPK{\alpha}$ activation is known to stimulate fatty acid oxidation in skeletal muscle of obese rodents. After OLETF rats were treated with GGEx, we studied the effects of GGEx on $AMPK{\alpha}$ and acetyl-CoA carboxylase (ACC) phosphorylation, and the expression of $AMPK{\alpha}$, $PPAR{\alpha}$, and $PPAR{\alpha}$ target genes. The effects of GGEx on mRNA expression of the above genes were also measured in C2C12 skeletal muscle cells. Administration of GGEx to OLETF rats for 8 weeks increased phosphorylation of $AMPK{\alpha}$ and ACC in skeletal muscle. GGEx also elevated skeletal muscle mRNA levels of $AMPK{\alpha}1$ and $AMPK{\alpha}2$ as well as $PPAR{\alpha}$ and its target genes. Consistent with the in vivo data, similar activation of genes was observed in GGEx-treated C2C12 cells. These results suggest that GGEx stimulates skeletal muscle $AMPK{\alpha}$ and $PPAR{\alpha}$ activation, leading to alleviation of obesity and related disorders.

Effect of ginger extract ingestion on skeletal muscle glycogen contents and endurance exercise in male rats

  • Hattori, Satoshi;Omi, Naomi;Yang, Zhou;Nakamura, Moeka;Ikemoto, Masahiro
    • Korean Journal of Exercise Nutrition
    • /
    • v.25 no.2
    • /
    • pp.15-19
    • /
    • 2021
  • [Purpose] Skeletal muscle glycogen is a determinant of endurance capacity for some athletes. Ginger is well known to possess nutritional effects, such as anti-diabetic effects. We hypothesized that ginger extract (GE) ingestion increases skeletal muscle glycogen by enhancing fat oxidation. Thus, we investigated the effect of GE ingestion on exercise capacity, skeletal muscle glycogen, and certain blood metabolites in exercised rats. [Methods] First, we evaluated the influence of GE ingestion on body weight and elevation of exercise performance in rats fed with different volumes of GE. Next, we measured the skeletal muscle glycogen content and free fatty acid (FFA) levels in GE-fed rats. Finally, we demonstrated that GE ingestion contributes to endurance capacity during intermittent exercise to exhaustion. [Results] We confirmed that GE ingestion increased exercise performance (p<0.05) and elevated the skeletal muscle glycogen content compared to the nonGE-fed (CE, control exercise) group before exercise (Soleus: p<0.01, Plantaris: p<0.01, Gastrocnemius: p<0.05). Blood FFA levels in the GE group were significantly higher than those in the CE group after exercise (p<0.05). Moreover, we demonstrated that exercise capacity was maintained in the CE group during intermittent exercise (p<0.05). [Conclusion] These findings indicate that GE ingestion increases skeletal muscle glycogen content and exercise performance through the upregulation of fat oxidation.

The role of myokines in cancer: crosstalk between skeletal muscle and tumor

  • Se-Young Park;Byeong-Oh Hwang;Na-Young Song
    • BMB Reports
    • /
    • v.56 no.7
    • /
    • pp.365-373
    • /
    • 2023
  • Loss of skeletal muscle mass is a primary feature of sarcopenia and cancer cachexia. In cancer patients, tumor-derived inflammatory factors promote muscle atrophy via tumor-to-muscle effects, which is closely associated with poor prognosis. During the past decade, skeletal muscle has been considered to function as an autocrine, paracrine, and endocrine organ by releasing numerous myokines. The circulating myokines can modulate pathophysiology in the other organs, as well as in the tumor microenvironment, suggesting myokines function as muscle-to-tumor signaling molecules. Here, we highlight the roles of myokines in tumorigenesis, particularly in terms of crosstalk between skeletal muscle and tumor. Better understanding of tumor-to-muscle and muscle-to-tumor effects will shed light on novel strategies for the diagnosis and treatment of cancer.

Effects of activator treatment on different skeletal patterns in growing class II malocclusion patients (성장기 II급 부정교합자에서 골격 형태에 따른 액티베이터 사용 효과에 관한 연구)

  • Ki, Jun-Hun;Lee, Jin-Woo
    • The korean journal of orthodontics
    • /
    • v.37 no.1 s.120
    • /
    • pp.29-43
    • /
    • 2007
  • Objective: To establish proper diagnosis and treatment plan for skeletal Class II malocclusions, some important factors to consider are the patient's skeletal morphology, prognosis as well as the treatment effects. Therefore, the present study analyzed the effects of activator treatment on different skeletal patterns in growing Class II malocclusion patients. Methods: A total of 116 patients (53 boys & 63 girls) in the experimental group were treated with the activator appliance. The experimental group was classified into either hyperdivergent or hypodivergent groups according to articular and genial angles. Results: Patients with hypodivergent growth patterns showed good effects of activator treatment. Conclusion: It seems conceivable that through classifying adolescent Class II malocclusion patients into different skeletal patterns, activator treatment effects may be predicted during the diagnosis and treatment planning stage.

The Experimental Study for the Balanced Restoration on the part of Spinal Skeletal Muscles in Low Back Pain Patients - By Acupuncture Stimuli Model of Limb Skeletal Muscle - (요통환자의 척주골격근 균형회복을 위한 실증적 연구 - 사지골격근의 침 자극모형을 중심으로 -)

  • Moon, Sang-Eun;Lee, Cheon-Bok
    • Journal of Korean Physical Therapy Science
    • /
    • v.8 no.1
    • /
    • pp.907-915
    • /
    • 2001
  • The purpose of this study is to effectively treat low back pain for the out patients who have been treated at the oriental hospital. Sorting the low back pain patients into four types based on scapular and ilium tilting hyper/hypo mobility characteristics, it has used several kinds of acupuncture stimuli on the 4 motor points of limb skeletal muscles, analyzing the acupuncture treatment on the 12 acupuncture points with which oriental hospitals has given to the low back pain patients and comparing with this effect. It has been analyzed how effectively the acupuncture stimuli has been contributed to the low back pain patients who suffered from skeletal muscles of spinal limb thorax abdominal and spinal skeletal system. The results are as follows. 1. There has been changes after treatment in both the control and experimental groups for low back pain patients, but the latter has been more increased in changes than the former. 2. There were much effects on the balanced restorations for spinal skeletal muscle in both the control group and experimental one, but on terms of restoration degree, the degree of the experimental group was higher than that of the control group. 3. Both the contrastive treatment and the experimental one have been contributed to the balanced restoration for all of the limb thorax abdominal muscles, but there were a few differences in terms of the way for restoration and the effects for improvement according to body types. 4. On both the control and the experimental group, spinal skeletal system has been restored with balance, but the experimental group has been higher effective on the balanced restoration than the one of the control group. Considering these results both the control and the experimental treatments have been contributed to the balanced restorations for all of low back pain patients who were suffering from skeletal muscles of spinal limb thorax abdominal and spinal skeletal system, but the contribution degree for the experimental group has been higher than that of the control group.

  • PDF

The Study of Literature Review on Mechanism of Bee Venom Therapy for Musculo-skeletal Disorder (봉독요법(蜂毒療法)의 근골격계질환(筋骨格界疾患) 치료기전(治療機轉)에 대한 문헌적(文獻的) 고찰(考察))

  • Kim, Sung-Soo;Chung, Won-Suk
    • The Journal of Korea CHUNA Manual Medicine
    • /
    • v.3 no.1
    • /
    • pp.111-123
    • /
    • 2002
  • Objectives : There have been many studies of the effect of Bee Venom therapy about arthritis, but no one study was reported about its whole functional mechanism to musculo-skeletal system. This study was designed to investigate the effect, Indication, and side effect of Bee Venom therapy on musculo-skeletal disease by literature review of articles. Results : The effects of Bee Venom therapy to musculo-skeletal system are divided to Anti_inflammatory effect and Anti-nociceptive effect. Anti_inflammatory effect is achieved through competitive chemotaxis, immuno-regulation, increasing of cortisol secretion by stimulating hypothalamus-pituitary gland-adrenal cortex axis. Anti-nociceptive effect is achieved by Anti-inflammatory mechanism and it works similar to anti-nociceptive effect of the acupuncture acting on central and peripheral nociceptive transduction system. The Bee Venom therapy could cause severe side effect, for example, hypersensitivity and anaphylaxis, injury to central nerve system and cardiovascular system, peripheral blood system, and renal dysfunction. Conclusions : With its Anti-inflammatory and Anti-nociceptive mechanism, Bee Venom therapy is considered that has good effects to autoimmune disease, chronic inflammation of various musculo-skeletal disease and various pain syndrome. But the clinician must be careful for its side effects.

  • PDF

The Effects of Skeletal Muscle Mass and Muscle Fatigue on the Proprioceptive Position Sense of the Knee Joint (뼈대근육량과 근피로가 무릎관절 고유수용성 위치감각에 미치는 영향)

  • Park, Sookyoung;Park, Kanghui
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.8 no.2
    • /
    • pp.139-147
    • /
    • 2020
  • Purpose : Proprioceptive position sense plays a key role in providing joint stability, and multiple factors are related to proprioceptive position sense. Thus, this study aimed to determine the effects of body composition, particularly skeletal muscle mass on proprioceptive position sense following muscle fatigue. Methods : Healthy female subjects agreed to have their body composition analyzed. Only subjects who had 18.5-22.9 kg/㎡ of BMI (body mass index) were included in this study, and the participants were divided into two groups by skeletal muscle mass level. The experimental group had a level of skeletal muscle lower than the standard level (n=9), while the control group showed a standard or high level of skeletal muscle mass (n=11). To determine the change in proprioceptive position sense of the knee joint, the absolute angle error (AAE) was evaluated following muscle fatigue on low extremity. The muscle fatigue was induced by isokinetic resistance exercise program of Biodex system. AAE was measured by the Biodex system and compared the result before and after muscle fatigue. Results : The experimental group showed a significant AAE difference between before (3.16±2.48 °) and after (5.40±2.61 °) muscle fatigue. In addition, there was a AAE difference between the experimental (5.40±2.61 °) and control groups (3.53±1.67 °) after fatigue; however, there was no significance. Those results indicated that low level of skeletal muscle mass might influence the proprioceptive position sense of the knee joint after muscle fatigue. Conclusion : Thus, maintaining the proper level of skeletal muscle mass is pivotal to reduce the risk of injury following muscle fatigue in ADL or sport activities.