• Title/Summary/Keyword: Skeletal Model

Search Result 204, Processing Time 0.034 seconds

Association between Shiftwork and Skeletal Muscle Mass Index (교대 근무와 골격근 지수의 연관성)

  • Park, Young Sook;Chae, Chang Ho;Lee, Hae Jeong;Kim, Dong Hee
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.32 no.3
    • /
    • pp.221-230
    • /
    • 2022
  • Objectives: The aim of this study is to evaluate the association between shiftwork and skeletal muscle mass index in a single university health check-up. Methods: We used data from 98,227 workers who answered in a special interview on health check-up at a local university hospital from 2014 to 2020. Pearson correlation analysis was conducted for comparing the association between skeletal muscle mass index and demographic and hematological variables in shiftwork and non-shiftwork groups. Mixed linear model analysis after controlling demographic and hematological variables was used to analyze the difference of skeletal muscle mass index between groups at every visit for seven years. Results: In linear regression analysis, the variables most significantly correlated with skeletal muscle index in both groups were shiftwork(p=0.049), BMI(p<0.001), hypertension(p=0.024), platelet(p<0.001), total protein (p<0.001), AST(p=0.028), ALT(p=0.003), ALP(p<0.001), total cholesterol(p=0.002), triglyceride(p=0.019), BUN (p=0.001), creatinine(p<0.001), and uric acid(p=0.002). After the adjustment for demographic and hematologic variables, the skeletal muscle mass index at every visit was decreased both in the shiftwork group and non-shiftwork group. The slope of the shiftwork group was -0.240 and non-shiftwork group -0.149, showing a significant difference (p<0.001). Conclusions: In the shiftwork group, the skeletal muscle mass index showed a tendency to decrease markedly over time compared to the non-shiftwork group. It is presumed that shift workers' skeletal muscle health was adversely affected by changes in the biological clock due to changes in wake-up and sleep patterns, and changes in food intake.

Aerobic Exercise Ameliorates Muscle Atrophy Induced by Methylglyoxal via Increasing Gastrocnemius and Extensor Digitorum Longus Muscle Sensitivity

  • Seong-Min Hong;Eun Yoo Lee;Jinho Park;Jiyoun Kim;Sun Yeou Kim
    • Biomolecules & Therapeutics
    • /
    • v.31 no.5
    • /
    • pp.573-582
    • /
    • 2023
  • Muscle atrophy is characterized by the loss of muscle function. Many efforts are being made to prevent muscle atrophy, and exercise is an important alternative. Methylglyoxal is a well-known causative agent of metabolic diseases and diabetic complications. This study aimed to evaluate whether methylglyoxal induces muscle atrophy and to evaluate the ameliorative effect of moderate-intensity aerobic exercise in a methylglyoxal-induced muscle atrophy animal model. Each mouse was randomly divided into three groups: control, methylglyoxal-treated, and methylglyoxal-treated within aerobic exercise. In the exercise group, each mouse was trained on a treadmill for 2 weeks. On the last day, all groups were evaluated for several atrophic behaviors and skeletal muscles, including the soleus, plantaris, gastrocnemius, and extensor digitorum longus were analyzed. In the exercise group, muscle mass was restored, causing in attenuation of muscle atrophy. The gastrocnemius and extensor digitorum longus muscles showed improved fiber cross-sectional area and reduced myofibrils. Further, they produced regulated atrophy-related proteins (i.e., muscle atrophy F-box, muscle RING-finger protein-1, and myosin heavy chain), indicating that aerobic exercise stimulated their muscle sensitivity to reverse skeletal muscle atrophy. In conclusion, shortness of the gastrocnemius caused by methylglyoxal may induce the dynamic imbalance of skeletal muscle atrophy, thus methylglyoxal may be a key target for treating skeletal muscle atrophy. To this end, aerobic exercise may be a powerful tool for regulating methylglyoxal-induced skeletal muscle atrophy.

Template-Based Reconstruction of Surface Mesh Animation from Point Cloud Animation

  • Park, Sang Il;Lim, Seong-Jae
    • ETRI Journal
    • /
    • v.36 no.6
    • /
    • pp.1008-1015
    • /
    • 2014
  • In this paper, we present a method for reconstructing a surface mesh animation sequence from point cloud animation data. We mainly focus on the articulated body of a subject - the motion of which can be roughly described by its internal skeletal structure. The point cloud data is assumed to be captured independently without any inter-frame correspondence information. Using a template model that resembles the given subject, our basic idea for reconstructing the mesh animation is to deform the template model to fit to the point cloud (on a frame-by-frame basis) while maintaining inter-frame coherence. We first estimate the skeletal motion from the point cloud data. After applying the skeletal motion to the template surface, we refine it to fit to the point cloud data. We demonstrate the viability of the method by applying it to reconstruct a fast dancing motion.

THE SKELETAL MATURITY OF CERVICAL VERTEBRAE OF CHILDREN WITH NORMAL OCCLUSION AND SKELETAL CLASS III MALOCCLUSION (정상교합자와 골격성 III급 부정교합자의 경추골성숙도에 관한 연구)

  • Yang, Kyu-Ho;Choi, Nam-Ki;Choi, Bong-Sun;Lee, Young-Jun;Ryu, Sun-Youl;Kim, Seon-Mi
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.31 no.1
    • /
    • pp.108-113
    • /
    • 2004
  • This study was to evaluate and compare differences of the cervical vertebral skeletal maturity of normal occlusion and skeletal Class III malocclusion. Normal occlusion (172 girls) and skeletal Class III malocclusion(191 girls) were classified according to diagnosis stone model and lateral cephalogram of Korean girls aging from 8 to 12 years. The concavity of inferior border, vertico-horizontal ratio of cervical vertebrae were observed and measured according to age. Differences of the cervical vertebral skeletal maturity were evaluated. The results were as follows : 1. The concavity of inferior border of the 2nd to 6th vertebrae of normal occlusion and skeletal Class III had uniformly increased with age. 2. The vertico-horizontal ratio of the 3rd to 6th vertebrae of girls with normal occlusion and skeletal Class III had uniformly increased with age. 3. There was no significant difference in cervical vertebral skeletal maturity between normal occlusion and skeletal Class III malocclusion in the concavity of inferior border of the 2nd to 6th vertebrae and in the vertico-horizontal ratio of the 3rd to 6th vertebrae. The results in the study indicate that there is no significant difference of cervical vertebral skeletal maturity between girls with normal occlusion and skeletal Class III malocclusion.

  • PDF

Mixed-reality simulation for orthognathic surgery

  • Fushima, Kenji;Kobayashi, Masaru
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.38
    • /
    • pp.13.1-13.12
    • /
    • 2016
  • Background: Mandibular motion tracking system (ManMoS) has been developed for orthognathic surgery. This article aimed to introduce the ManMoS and to examine the accuracy of this system. Methods: Skeletal and dental models are reconstructed in a virtual space from the DICOM data of three-dimensional computed tomography (3D-CT) recording and the STL data of 3D scanning, respectively. The ManMoS uniquely integrates the virtual dento-skeletal model with the real motion of the dental cast mounted on the simulator, using the reference splint. Positional change of the dental cast is tracked by using the 3D motion tracking equipment and reflects on the jaw position of the virtual model in real time, generating the mixed-reality surgical simulation. ManMoS was applied for two clinical cases having a facial asymmetry. In order to assess the accuracy of the ManMoS, the positional change of the lower dental arch was compared between the virtual and real models. Results: With the measurement data of the real lower dental cast as a reference, measurement error for the whole simulation system was less than 0.32 mm. In ManMoS, the skeletal and dental asymmetries were adequately diagnosed in three dimensions. Jaw repositioning was simulated with priority given to the skeletal correction rather than the occlusal correction. In two cases, facial asymmetry was successfully improved while a normal occlusal relationship was reconstructed. Positional change measured in the virtual model did not differ significantly from that in the real model. Conclusions: It was suggested that the accuracy of the ManMoS was good enough for a clinical use. This surgical simulation system appears to meet clinical demands well and is an important facilitator of communication between orthodontists and surgeons.

Bio-mechanical Evaluation of Squatting Posture with Asymmetric Trunk Motion (몸통 비틀림 운동을 고려한 쪼그려 앉은 작업자의 요추부 작업부담 평가)

  • Lim, Dae-Seob;Kim, Young-Jin;Lee, Kyoung-Suk;Mun, Joung-Hwan
    • Journal of Biosystems Engineering
    • /
    • v.36 no.1
    • /
    • pp.58-67
    • /
    • 2011
  • A high prevalence of protected horiculture farmer's work-related musculo-skeletal disorders (MSDs) have been reported in precedent studies. One of the tasks required ergonomic intervention to reduce the musculo-skeletal risks is the task of harvesting. The purpose of this study is to evaluate quantitatively the spinal load of worker harvesting with squatting posture to predict and prevent musculo-skeletal risks. Spinal load in Squatting posture with asymmetric trunk motion were analyzed. Before evaluating spinal load on harvesting worker by bio-mechanical approach, it is needed to validate human model. In this study, ADAMS LifeMOD human model shows satisfactory results, comparing with already validated model's results or measured results. While worker reached arms (20%, 40%, 70% arm reach) with various asymmetric trunk motion (0, 45, 90 degree), their spinal loads (extension, twisting and lateral bending moment) were evaluated. In case of extensor moment at lumbo-sacral joint, the more the arm reach got increased, the moment increased. however, in case of twisting moment and lateral bending moment, the more both arm reach and asymmetric trunk motion got increased, the moment increased significantly. The findings of this study suggest that it need to be determine the spinal load, especially twisting, lateral bending moment in evaluating musculo-skeletal workload in squatting posture.

Association between Vibration Exposure and Skeletal Muscle Mass Index in a Single University Hospital Health Check-up (일개 대학 병원 건강 검진 수검자에서 진동 노출과 골격근 지수의 관련성)

  • Park, Young Sook;Chae, Chang Ho
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.30 no.3
    • /
    • pp.313-320
    • /
    • 2020
  • Objectives: The aim of this study is to evaluate the association between vibration exposure and skeletal muscle mass index through a single university health check-up. Methods: We used data from 134,067 male subjects who received a general health check-up or vibration exposure health check-up out of the 1,515,322 people who underwent medical check-up at a local university hospital from 2002 to 2018. Pearson correlation analysis was conducted for comparing the association between skeletal muscle mass index and demographic and hematological variables in both groups. Mixed linear model analysis after controlling demographic and hematological variables was used to analyze the differences in skeletal muscle mass index between groups at every visit over 10 years. Results: In the Pearson correlation test, the variables that showed different results when comparing the two groups were C-reactive protein (p=0.001) and glycated hemoglobin (p=0.002) in the vibration exposure group and erythrocyte sedimentation rate (p<0.001) and vitamin D (p<0.001) in the general group. After the adjustment of demographic and hematologic variables, the skeletal muscle mass index at every visit was markedly decreased in the vibration exposure group (p<0.001). Conclusions: In the vibration exposure group, the skeletal muscle mass index showed a tendency to decrease markedly over time compared to the general health check-up group, which showed that C-reactive protein and glycated hemoglobin would have an influence on skeletal muscle index in male workers exposed to vibration.

The Effects of Daekumeumja on Alcohol-induced Muscle Atrophy in Rats (대금음자(對金飮子)가 흰쥐의 만성 알콜성 근위축에 미치는 영향)

  • Kim, Bum Hoi
    • Herbal Formula Science
    • /
    • v.24 no.3
    • /
    • pp.153-161
    • /
    • 2016
  • Chronic alcoholic myopathy is one of the most common skeletal muscle disorders. It is characterized by a reduction in the entire skeletal musculature, skeletal muscle weakness, and difficulties in gait. Patients with alcoholic hepatitis and cirrhosis have severe muscle loss that contributes to worsening outcome. Although the myopathy selectively affects Type II (fast twitch, glycolytic, anaerobic) skeletal muscle fibers, total skeletal musculature is reduced. The severity of the muscle atrophy is proportional to the duration and amount of alcohol consumed and leads to decreased muscle strength. The mechanisms for the myopathy are generally unknown but it is not due to overt nutritional deficiency, nor due to either neuropathy or severe liver disease. Skeletal muscle mass and protein content are maintained by a balance between protein synthesis and breakdown and in vivo animal models studies have shown that ethanol inhibits skeletal muscle protein synthesis. Daekumeumja is a traditional Korean medicine that is widely employed to treat various alcohol-induced diseases. Muscle diseases are often related to liver diseases and conditions. The main objective of this study was to assess that Daekumeumja extract could have protective effect against alcoholic myopathy in a Sprague-Dawley rat model. Rats were orally given 25% ethanol (5ml/kg, body weight) for 8 weeks. After 30 minutes, rats were administrated with Daekumeumja extract. Controls were similarly administrated with the vehicle alone. The weights of gastrocnemius, soleus and plantaris muscles were assessed and the morphologic changes of gastrocnemius and plantaris muscles were also assessed by hematoxylin and eosin staining. In results, The muscles from ethanol treated rats displayed a significant reduction in muscle weight and average cross section area compared to Normal group. Daekumeumja extract treated group showed increased muscle weight and muscle fiber compared to the ethanol treated group. It was concluded that Daekumeumja extract showed ameliorating effects on chronic alcohol myopathy in skeletal muscle.

Generation of a skeletal mechanism of coal combustion based on the chemical pathway analysis

  • Ahn, Seongyool;Watanabe, Hiroaki;Shoji, Tetsuya;Umemoto, Satoshi;Tnno, Kenji
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.5-7
    • /
    • 2014
  • A skeletal mechanism of coal combustion was derived from a detailed coal combustion kinetic mechanism through an importance analysis of chemical pathways. The reduction process consists of roughly two parts. The first process is performed based on a connectivity analysis between species. In this process, DRGEPSA is chosen for reduction process. Strongly connected species and related reactions from the important species set as start species by the operator are sorted into the reduced mechanism. About 70% of species and reactions can be removed with a limited accuracy loss. Subsequently the second reduction process, CSP, is performed. This method focuses on an importance of each reaction and can reduce a volume of mechanism appropriately. Through these analyses, a skeletal mechanism is generated that is including 65 species and 150 reactions. The generated skeletal mechanism is verified through a comparison with the detailed mechanism in the homogeneous reactor model of CHEMKIN-PRO under wide range of conditions. The generated mechanism can give an advantage in the analysis of coal combustion characteristics in detail in large scale simulations such as LES and DNS.

  • PDF

An efficient seismic analysis of regular skeletal structures via graph product rules and canonical forms

  • Kaveh, A.;Zakian, P.
    • Earthquakes and Structures
    • /
    • v.10 no.1
    • /
    • pp.25-51
    • /
    • 2016
  • In this study, graph product rules are applied to the dynamic analysis of regular skeletal structures. Graph product rules have recently been utilized in structural mechanics as a powerful tool for eigensolution of symmetric and regular skeletal structures. A structure is called regular if its model is a graph product. In the first part of this paper, the formulation of time history dynamic analysis of regular structures under seismic excitation is derived using graph product rules. This formulation can generally be utilized for efficient linear elastic dynamic analysis using vibration modes. The second part comprises of random vibration analysis of regular skeletal structures via canonical forms and closed-form eigensolution of matrices containing special patterns for symmetric structures. In this part, the formulations are developed for dynamic analysis of structures subjected to random seismic excitation in frequency domain. In all the proposed methods, eigensolution of the problems is achieved with less computational effort due to incorporating graph product rules and canonical forms for symmetric and cyclically symmetric structures.