• 제목/요약/키워드: Skeg vertical angle

검색결과 3건 처리시간 0.014초

쌍축 컨테이너선의 선미선형 변화에 따른 유동 특성에 대한 수치해석 (Numerical Analysis of Flow Characteristics of a Twin-skeg Container Ship with Variation of Stern Hull Shape)

  • 김희택;반석호;김형태
    • 대한조선학회논문집
    • /
    • 제44권6호
    • /
    • pp.551-563
    • /
    • 2007
  • Numerical analysis for flow characteristics of a twin skeg container ship was carried out according to skeg vertical angles($0^{\circ}$, $10^{\circ}$, $20^{\circ}$) and skeg distances(16m, 20m, 24m) by using a commercial CFD code, FLUENT. Computed: pressure distributions, wake distributions and resistance coefficients have been compared with experimental and WAVIS results carried out by MOERI. Flow characteristics from numerical analysis such as nominal wake fractions, wake distribution and directions of the transverse vectors give good agreement with WAVIS results, even though there are quantitative discrepancy comparing with experimental measurements at the propeller plane. It is found that the better resistance performance can be obtained with the increase of the skeg vertical angle and the decrease of the skeg distance, which are mainly caused by viscous pressure resistance due to the skeg form and pressure recovery around the skeg. In addition, a vertical angle of the skeg gives more effect to the resistance coefficient comparing with the skeg distance. On the basis of results of the present study, it shows that numerical analysis using the commercial code, FLUENT, is useful and efficient tool for the evaluation of the complex stern hull form with twin-skegs.

Numerical Computation for the Comparison of Stern Flows around Various Twin Skegs

  • Kim, Jin;Park, Il-Ryong;Van, Suak-Ho;Choi, Young-Bok;Park, No-Joon
    • Journal of Ship and Ocean Technology
    • /
    • 제10권2호
    • /
    • pp.1-10
    • /
    • 2006
  • Numerical analysis of viscous flow around twin-skeg hull forms was conducted according to the variations of distance between skegs and vertical skeg inclinations by using a hydrodynamic analysis system, WAVIS. Six twin-skeg hull forms were derived by combining three distances between skegs (16m, 20m, 24m) and four vertical skeg angles ($0^{\circ},\;10^{\circ},\;15^{\circ},\;20^{\circ}$). It is found that the better resistance performance can be obtained with larger vertical skeg angle and smaller skeg distance for the present test cases. It also can be seen that the same trend is true for the nominal wake distributions in the propeller plane. Those tendencies were confirmed by the experimental results of MOERI. It is shown that numerical analysis can be a useful and practical tool for the evaluation and improvement of hydrodynamic performances for the complex stern hull forms with twin skegs.

CFD를 이용한 쌍축 컨테이너선 주위의 유동계산 (Computation of Flow around a Container Ship with Twin-Skegs using the CFD)

  • 김희택;김형태
    • 대한조선학회논문집
    • /
    • 제44권4호
    • /
    • pp.370-378
    • /
    • 2007
  • In this study. a numerical analysis has been performed for the turbulent flow around a 15,000TEU twin-skeg container ship using a commercial CFD code. FLUENT. The computed results have been compared with the model test data from MOERI. We investigated viscous resistance coefficient. wake distribution and characteristics of the shear flow according to the grid numbers. Although the free surface is approximated by the plane of symmetry in this work. the calculated axial velocity and transverse vector show a good agreement with the MOERI experimental data except for the region of 0.9 level of axial velocity at the propeller plane. The numerical analysis show that commercial CFD code is useful tool for the evaluation of complex hull form with twin-skegs.